This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129357 #3 Mar 30 2012 18:37:03 %S A129357 1,-4,-4,36,-64,256,-1328,4488,-11406,17700,14716,-194508,662768, %T A129357 -1374476,2210780,-5820284,25965483,-95963664,259794360,-545959440, %U A129357 952758316,-1278120568,60070208,8030404744,-34554134770,94549651780,-196087124052,330754522268,-511020392180 %N A129357 G.f.: A(x) = Product_{n>=1} [ (1-x)^4*(1 + 4x + 10x^2 +...+ n(n+1)(n+2)/3!*x^(n-1)) ]. %F A129357 G.f.: A(x) = Product_{n>=1} [ 1 - (n+1)(n+2)(n+3)/3!*x^n + 3n(n+2)(n+3)/3!*x^(n+1) - 3n(n+1)(n+3)/3!*x^(n+2) + n(n+1)(n+2)/3!*x^(n+3) ]. %e A129357 G.f.: A(x) = (1-4x+6x^2-4x^3+x^4)*(1-10x^2+20x^3-15x^4+4x^5)*(1-20x^3+45x^4-36x^5+10x^6)*(1-35x^4+84x^5-70x^6+20x^7)*... %e A129357 Terms are divisible by 4 except at positions given by: %e A129357 a(n) == 1 (mod 4) at n = 16*[0, 2, 5, 15, 22, 26, 40,...]; %e A129357 a(n) == -1 (mod 4) at n = 16*[1, 7, 12, 35, 51, 57,...]; %e A129357 a(n) == 2 (mod 4) at n = 8*[1,3,5,6,8,9,13,15,16,19,..,A129359(k),..]. %o A129357 (PARI) {a(n)=if(n==0,1,polcoeff(prod(k=1,n,(1-x)^4*sum(j=1,k,binomial(j+2,3)*x^(j-1)) +x*O(x^n)),n))} %Y A129357 Cf. A129355, A129356, A129358, A129359. %K A129357 sign %O A129357 0,2 %A A129357 _Paul D. Hanna_, Apr 11 2007