cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129363 Number of partitions of 2n into the sum of two twin primes.

This page as a plain text file.
%I A129363 #20 Sep 16 2024 15:31:27
%S A129363 0,0,1,1,2,1,2,2,2,2,3,3,2,1,2,2,3,3,2,1,2,2,3,4,2,1,2,1,2,3,3,2,2,1,
%T A129363 2,4,3,3,4,2,2,3,2,2,4,2,0,0,0,2,4,3,2,2,2,4,6,3,3,5,3,1,2,1,2,4,2,1,
%U A129363 2,2,4,5,3,2,4,3,3,4,2,2,4,2,3,6,3,1,2,1,3,6,4,2,2,1,2,4,3,4,6,4,4,5,3,6,12
%N A129363 Number of partitions of 2n into the sum of two twin primes.
%C A129363 a(n/2)=0 for the n in A007534. The logarithmic plot of this sequence seems very regular after 200000 terms.
%H A129363 T. D. Noe, <a href="/A129363/b129363.txt">Table of n, a(n) for n=1..10000</a>
%H A129363 James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=Gojd8mTl3Do">Goldbach Conjecture (but with TWIN PRIMES)</a>, Numberphile video (2024)
%H A129363 T. D. Noe, <a href="http://www.sspectra.com/math/A129363.gif">Logarithmic plot of 10^6 terms</a>
%F A129363 a(n) = Sum_{i=1..n} ceiling((A010051(i+2) + A010051(i-2))/2) * ceiling((A010051(2n-i+2) + A010051(2n-i-2))/2) * A010051(2n-i) * A010051(i). - _Wesley Ivan Hurt_, Jan 30 2014
%F A129363 a(n) = sum(A164292(2*n - A001097(k)): A001097(k) <= n). - _Reinhard Zumkeller_, Feb 03 2014
%e A129363 a(11)=3 because 22 = 3+19 = 5+17 = 11+11.
%t A129363 nn=1000; tw=Select[Prime[Range[PrimePi[nn]]], PrimeQ[ #+2]&]; tw=Union[tw,tw+2]; tc=Table[0,{nn}]; tc[[tw]]=1; Table[cnt=0; k=1; While[tw[[k]]<=n/2, cnt=cnt+tc[[n-tw[[k]]]]; k++ ]; cnt, {n,2,nn,2}]
%o A129363 (Haskell)
%o A129363 a129363 n = sum $ map (a164292 . (2*n -)) $ takeWhile (<= n) a001097_list
%o A129363 -- _Reinhard Zumkeller_, Feb 03 2014
%Y A129363 Cf. A175931 (n for which a(n-1), a(n), a(n+1) are equal).
%Y A129363 Cf. A001097, A002375, A007534.
%K A129363 nonn
%O A129363 1,5
%A A129363 _T. D. Noe_, Apr 11 2007
%E A129363 Comment converted to crossref by _Klaus Brockhaus_, Oct 27 2010