This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129364 #17 Jun 24 2021 16:28:35 %S A129364 1,2,6,96,480,207360,1451520,2972712960,722369249280,5778953994240000, %T A129364 63568493936640000,9111096278347394580480000, %U A129364 118444251618516129546240000,10400352846118664303196241920000 %N A129364 a(n) = Product_{k = 1..n} A066841(k). %C A129364 Conjecture: a(n) divides A092287(n) for all n - see comments in A129365. %F A129364 a(n) = Product_{k = 1..n} Product_{d|k} d^(k/d). %F A129364 a(n) = Product_{k = 1..n} ((floor(n/k))!)^k. %F A129364 a(n) = exp(Sum_{k = 1..n} log(k)/2 * floor(n/k) * floor(1 + n/k)). - _Daniel Suteu_, Sep 12 2018 %F A129364 log(a(n)) ~ c * n^2, where c = -zeta'(2)/2 = A073002/2 = 0.468774... - _Vaclav Kotesovec_, Jun 24 2021 %t A129364 Table[Product[Floor[n/k]!^k, {k, 1, n}], {n, 1, 15}] (* _Vaclav Kotesovec_, Jun 24 2021 *) %t A129364 Table[Product[k^(Floor[n/k]*(1 + Floor[n/k])/2), {k, 1, n}], {n, 1, 15}] (* _Vaclav Kotesovec_, Jun 24 2021 *) %o A129364 (PARI) a(n) = prod(k=1, n, k^((n\k) * (1 + n\k) \ 2)); \\ _Daniel Suteu_, Sep 12 2018 %Y A129364 Cf. A007955, A066841, A092143, A092287, A129365. %K A129364 nonn,easy %O A129364 1,2 %A A129364 _Peter Bala_, Apr 11 2007