A129409 Engel expansion of L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
2, 2, 2, 14, 94, 372, 1391, 7690, 17729, 49204, 87816, 128433, 151275, 290477, 297212, 299837, 352249, 897751, 1081032, 1646358, 2402614, 36591866, 49132456, 93538655, 141789387, 180474393, 687775235, 851204316, 1868593596, 7042652755
Offset: 1
Examples
L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/2 + 1/(2*2) + 1/(2*2*2) + 1/(2*2*2*14) + 1/(2*2*2*14*94) + ...
References
- Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
Crossrefs
Programs
-
Mathematica
nmax = 100; prec = 2000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; First@Transpose@NestList[{Ceiling[1/(#[[1]] #[[2]] - 1)], #[[1]] #[[2]] - 1}&, {Ceiling[1/c], c}, nmax - 1]
Formula
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = sum_{k >=1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
Comments