This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129410 #7 Dec 10 2016 03:03:04 %S A129410 1,8,13,16,64,6951,206515,344040,11364380,14595803,136951831, %T A129410 417525297,691111129,982473113,15154864245,17661539909,31435459113, %U A129410 49634203300,1454188399688,2112564552862,2266989878695,5056833185437,8740145960744 %N A129410 Pierce expansion of L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3. %C A129410 Contributed to OEIS on April 15, 2007 -- the 300th anniversary of the birth of Leonhard Euler. %D A129410 Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292 %F A129410 chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted. %F A129410 Series: L(3, chi3) = Sum_{k>=1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ... %F A129410 Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)). %e A129410 L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/1 - 1/(1*8) + 1/(1*8*13) - 1/(1*8*13*16) + 1/(1*8*13*16*64) - ... %t A129410 nmax = 100; prec = 3000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; First@Transpose@NestList[{Floor[ 1/(1 - #[[1]] #[[2]]) ], 1 - #[[1]] #[[2]]}&, {Floor[1/c], c}, nmax - 1] %Y A129410 Cf. A129404, A129405, A129406, A129407, A129408, A129409, A129411. %Y A129410 Cf. A129658, A129659, A129660, A129661, A129662, A129663, A129664, A129665. %K A129410 nonn,easy %O A129410 1,2 %A A129410 _Stuart Clary_, Apr 15 2007