This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129454 #8 Feb 07 2024 09:01:57 %S A129454 1,1,1,2,6,1536,7680,8806025134080,61642175938560, %T A129454 2168841254587541957294161920,7562281854741110985626291951024209920, %U A129454 1362299589723309231779453337910253309054734620740812800000000 %N A129454 a(n) = Product{i=1..n-1} Product{j=1..n-1} Product{k=1..n-1} gcd(i,j,k). %C A129454 Conjecture: Let p be a prime and let ordp(n,p) denote the largest power of p which divides n. For example, ordp(48,2)=4 since 48 = 3*(2^4). Then we conjecture that the prime factorization of a(n) is given by ordp(a(n),p)=(floor(n/p))^3 + (floor(n/p^2))^3 + (floor(n/p^3))^3 + . . .. Compare with the comments in A092287. %H A129454 G. C. Greubel, <a href="/A129454/b129454.txt">Table of n, a(n) for n = 0..26</a> %F A129454 a(n) = Product{i=1..n-1} Product{j=1..n-1} Product{k=1..n-1} gcd(i,j,k), for n > 2, otherwise a(n) = 1. %t A129454 A129454[n_]:= Product[GCD[j,k,m], {j,n-1}, {k,n-1}, {m,n-1}]; %t A129454 Table[A129454[n], {n,0,20}] (* _G. C. Greubel_, Feb 07 2024 *) %o A129454 (Magma) %o A129454 A129454:= func< n | n le 1 select 1 else (&*[(&*[(&*[GCD(GCD(j,k),m): k in [1..n-1]]): j in [1..n-1]]): m in [1..n-1]]) >; %o A129454 [A129454(n): n in [0..20]]; // _G. C. Greubel_, Feb 07 2024 %o A129454 (SageMath) %o A129454 def A129454(n): return product(product(product(gcd(gcd(j,k),m) for k in range(1,n)) for j in range(1,n)) for m in range(1,n)) %o A129454 [A129454(n) for n in range(21)] # _G. C. Greubel_, Feb 07 2024 %Y A129454 Cf. A092287, A129455. %K A129454 nonn %O A129454 0,4 %A A129454 _Peter Bala_, Apr 16 2007