This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129468 #19 Feb 16 2025 08:33:05 %S A129468 -1,-1,-2,-3,-4,0,-6,-7,-8,-2,-10,-4,-12,-4,-6,-15,-16,-6,-18,-10,-10, %T A129468 -8,-22,-12,-24,-10,-26,-16,-28,12,-30,-31,-18,-14,-22,-22,-36,-16, %U A129468 -22,-26,-40,12,-42,-28,-30,-20,-46,-28,-48,-22,-30,-34,-52,-24 %N A129468 Unitary abundance of n. %C A129468 The values of n which generate negative elements of this sequence are in A129487, the values of n which generate the zeros of this sequence are in A002827 and the values of n which generate positive elements of this sequence are in A034683 %H A129468 Nathaniel Johnston, <a href="/A129468/b129468.txt">Table of n, a(n) for n = 1..10000</a> %H A129468 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a>. %F A129468 a(n) = A034460(n) - n = A034448(n) - 2n. %F A129468 From _Amiram Eldar_, Apr 06 2024: (Start) %F A129468 a(A129487(n)) < 0. %F A129468 a(A002827(n)) = 0. %F A129468 a(A034683(n)) > 0. %F A129468 Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)/(2*zeta(3)) - 1 = -0.3157836111... . (End) %e A129468 As the unitary divisors of 12 are 1, 3, 4 and 12, which sum to 20, then a(12) = 20 - 2*12 = -4. %p A129468 A129468 := proc(n) %p A129468 A034448(n)-2*n ; %p A129468 end proc: %p A129468 seq(A129468(n),n=1..40) ; # _R. J. Mathar_, Nov 10 2014 %t A129468 UnitaryDivisors[n_Integer?Positive] := Select[Divisors[n], GCD[ #,n/# ] == 1&]; sstar[n_] := Plus@@UnitaryDivisors[n] - n; sstar[ # ] - # &/@ Range[40] %t A129468 a[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - 2*n; a[1] = -1; Array[a, 100] (* _Amiram Eldar_, Apr 06 2024 *) %o A129468 (PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, 1 + f[i, 1]^f[i, 2]) - 2*n; } \\ _Amiram Eldar_, Apr 06 2024 %Y A129468 Cf. A034460, A034448, A129487, A002827, A034683. %Y A129468 Cf. A002117, A013661. %K A129468 easy,sign %O A129468 1,3 %A A129468 _Ant King_, Apr 17 2007