A129470 Primes p such that the largest prime factor of p+1 has Erdős-Selfridge class+ < N-1 if p is of class N+.
883, 1747, 2417, 2621, 3181, 3301, 3533, 3571, 3691, 3853, 4027, 4133, 4513, 4783, 4861, 4957, 5303, 5381, 5393, 5563, 5641, 5821, 6067, 6577, 6991, 7177, 7253, 7331, 8059, 8093, 8377, 8731, 8839, 8929, 8969, 9221, 9281, 9397, 9613, 9931
Offset: 1
Examples
a(3) = 883 = -1 + 2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 1+.
Crossrefs
Programs
-
PARI
class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129470(n=100,p=1,a=[])={ local(f); while( #a
3, f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f,2,-1, f[i]=class( f[i] ); if( f[i] > f[ #f], a=concat(a,p); /*print(#a," ",p);*/ break))); a}
Comments