This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129479 #13 Apr 07 2025 13:31:53 %S A129479 1,2,1,2,1,1,3,1,1,1,4,0,0,1,1,4,3,1,0,1,1,6,0,0,0,0,1,1,6,2,1,1,0,0, %T A129479 1,1,6,2,2,0,0,0,0,1,1,8,4,0,1,1,0,0,0,1,1,10,0,0,0,0,0,0,0,0,1,1,6,4, %U A129479 4,2,1,1,0,0,0,0,1,1,12,0,0,0,0,0,0,0,0,0,0,1,1 %N A129479 Triangle read by rows: A054523 * A097806 as infinite lower triangular matrices. %H A129479 G. C. Greubel, <a href="/A129479/b129479.txt">Rows n = 1..50 of the triangle, flattened</a> %F A129479 Sum_{k=1..n} T(n, k) = A053158(n) (row sums). %F A129479 T(n, 1) = A126246(n). %F A129479 From _G. C. Greubel_, Feb 11 2024: (Start) %F A129479 T(n, k) = A054523(n, k) + A054523(n, k+1) for k < n, otherwise 1. %F A129479 T(2*n-1, n) = A019590(n). %F A129479 T(2*n, n) = A054977(n). %F A129479 T(2*n+1, n) = A000038(n). %F A129479 T(3*n, n) = A063524(n-1). %F A129479 T(3*n-2, n) = A183918(n+2). %F A129479 Sum_{k=1..n} (-1)^(k-1) * T(n, k) = A000010(n). (End) %e A129479 First few rows of the triangle: %e A129479 1; %e A129479 2, 1; %e A129479 2, 1, 1; %e A129479 3, 1, 1, 1; %e A129479 4, 0, 0, 1, 1; %e A129479 4, 3, 1, 0, 1, 1; %e A129479 6, 0, 0, 0, 0, 1, 1; %e A129479 6, 2, 1, 1, 0, 0, 1, 1; %e A129479 ... %t A129479 A054523[n_, k_]:= If[n==1, 1, If[Divisible[n,k], EulerPhi[n/k], 0]]; %t A129479 T[n_, k_]:= If[k<n, Sum[A054523[n, j+k], {j,0,1}], 1]; %t A129479 Table[T[n,k],{n,16},{k,n}]//Flatten (* _G. C. Greubel_, Feb 11 2024 *) %o A129479 (Magma) %o A129479 A054523:= func< n,k | n eq 1 select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >; %o A129479 A129479:= func< n,k | k le n-1 select A054523(n,k) + A054523(n,k+1) else 1 >; %o A129479 [A129479(n,k): k in [1..n], n in [1..16]]; // _G. C. Greubel_, Feb 11 2024 %o A129479 (SageMath) %o A129479 def A054523(n,k): %o A129479 if (k==n): return 1 %o A129479 elif (n%k): return 0 %o A129479 else: return euler_phi(n//k) %o A129479 def A129479(n, k): %o A129479 if k<0 or k>n: return 0 %o A129479 elif k==n: return 1 %o A129479 else: return A054523(n,k) + A054523(n,k+1) %o A129479 flatten([[A129479(n, k) for k in range(1,n+1)] for n in range(1,17)]) # _G. C. Greubel_, Feb 11 2024 %Y A129479 Cf. A000010 (alternating row sums), A053158 (row sums). %Y A129479 Cf. A000038, A019590, A054523, A054977. %Y A129479 Cf. A063524, A097806, A126246, A183918. %K A129479 nonn,tabl %O A129479 1,2 %A A129479 _Gary W. Adamson_, Apr 17 2007