This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129494 #13 Aug 20 2023 17:01:25 %S A129494 6,12,15,20,22,24,26,28,30,34,38,40,46,48,56,58,60,62,66,69,72,74,77, %T A129494 80,82,84,85,86,87,88,91,93,94,96,102,104,105,106,111,117,118,120,122, %U A129494 123,126,129,132,134,140,141,142,144,146,158,159,166,168,170,177,178,182 %N A129494 Composite numbers k such that 4^k mod k is a power of 4 greater than 1. %C A129494 Complement to composite numbers: 4, 8, 9, 10, 14, 16, 18, 21, 25, 27, 32, 33, 35, 36, 39, 42, 44, 45, 49, 50, 51, 52, 54, 55, 57, ... - _R. J. Mathar_, May 16 2008 %H A129494 Robert Israel, <a href="/A129494/b129494.txt">Table of n, a(n) for n = 1..10000</a> %e A129494 22 is a term since 4^22 mod 22 = 16. %p A129494 filter:= proc(n) local k,j; %p A129494 if isprime(n) then return false fi; %p A129494 k:= 4 &^ n mod n; %p A129494 j:= padic:-ordp(k,2); %p A129494 k>1 and j::even and k = 2^j %p A129494 end proc: %p A129494 select(filter, [$4..1000]); # _Robert Israel_, Dec 03 2019 %t A129494 Select[ Range@ 161, IntegerQ@ Log[4, PowerMod[4, #, # ]] &] %o A129494 (Magma) [k:k in [2..200]| not IsPrime(k) and not IsZero(a) and (PrimeDivisors(a) eq [2]) and &+[j[1]*j[2]: j in Factorization(a) ] mod 4 eq 0 where a is 4^k mod k]; // _Marius A. Burtea_, Dec 04 2019 %Y A129494 Cf. A036236, A129492, A129493, A129495, A129496, A129497. %Y A129494 Contains A122781 except for 1 and 4. %K A129494 easy,nonn %O A129494 1,1 %A A129494 _Robert G. Wilson v_, Apr 17 2007 %E A129494 Corrected and extended by _R. J. Mathar_, May 16 2008