This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129501 #14 Sep 24 2019 02:39:49 %S A129501 1,2,1,-1,0,1,3,2,0,1,-1,0,0,0,1,-2,-1,2,0,0,1,-1,0,0,0,0,0,1,4,3,0,2, %T A129501 0,0,0,1,0,0,-1,0,0,0,0,0,1,-2,-1,0,0,2,0,0,0,0,1,-1,0,0,0,0,0,0,0,0, %U A129501 0,1,-3,-2,3,-1,0,2,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,1 %N A129501 A103994 * A115361. %C A129501 Row sums = A129502: (1, 3, 0, 6, 0, 0, 0, 10, 0, 0, ...). %H A129501 Andrew Howroyd, <a href="/A129501/b129501.txt">Table of n, a(n) for n = 1..1275</a> %F A129501 A103994 * A115361 as infinite lower triangular matrices. %F A129501 T(n,k) = A317673(n/k) for k | n, T(n,k) = 0 otherwise. - _Andrew Howroyd_, Aug 03 2018 %e A129501 First few rows of the triangle are: %e A129501 1; %e A129501 2, 1; %e A129501 -1, 0, 1; %e A129501 3, 2, 0, 1; %e A129501 -1, 0, 0, 0, 1; %e A129501 -2, -1, 2, 0, 0, 1; %e A129501 -1, 0, 0, 0, 0, 0, 1; %e A129501 4, 3, 0, 2, 0, 0, 0, 1; %e A129501 0, 0, -1, 0, 0, 0, 0, 0, 1; %e A129501 ... %t A129501 b[n_] := Module[{e}, Sum[e = IntegerExponent[d, 2]; If[d == 2^e, MoebiusMu[n/d] Binomial[2 + e, 2], 0], {d, Divisors[n]}]]; %t A129501 T[n_, k_] := If[Divisible[n, k], b[n/k], 0]; %t A129501 Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 24 2019 *) %o A129501 (PARI) T(n,k)={ if(n%k, 0, sumdiv(n/k, d, my(e=valuation(d, 2)); if(d==1<<e, moebius(n/(k*d))*binomial(2+e,2), 0))) } \\ _Andrew Howroyd_, Aug 03 2018 %Y A129501 Column 1 is A317673 (Moebius transform of A129502). %Y A129501 Row sums are A129502. %Y A129501 Cf. A103994, A115361, A129360, A000217, A001511. %K A129501 tabl,sign %O A129501 1,2 %A A129501 _Gary W. Adamson_, Apr 17 2007 %E A129501 Terms a(56) and beyond from _Andrew Howroyd_, Aug 03 2018