cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129510 Number of distinct differences between pairs of distinct divisors of n.

This page as a plain text file.
%I A129510 #9 Feb 16 2025 08:33:05
%S A129510 0,1,1,3,1,5,1,6,3,6,1,10,1,6,5,10,1,13,1,13,6,6,1,18,3,6,6,14,1,19,1,
%T A129510 15,6,6,6,24,1,6,6,22,1,23,1,15,12,6,1,30,3,15,6,15,1,25,6,23,6,6,1,
%U A129510 37,1,6,13,21,6,25,1,15,6,24,1,40,1,6,13,15,6,26,1,34,10,6,1,45,6,6,6,26
%N A129510 Number of distinct differences between pairs of distinct divisors of n.
%C A129510 a(n) = #{|x-y|: x <> y and n mod x = n mod y = 0};
%C A129510 a(n) = 1 iff n is prime;
%C A129510 a(n) <= A000217(A000005(a(n))-1) = A066446(n):
%C A129510 a(A129511(n))=A066446(A129511(n)), a(A129512(n)) < A066446(A129512(n)).
%H A129510 Charles R Greathouse IV, <a href="/A129510/b129510.txt">Table of n, a(n) for n = 1..10000</a>
%H A129510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Divisor.html">Divisor</a>
%e A129510 n=44, set of divisors of 44 = {1,2,4,11,22,44}:
%e A129510 44-22=22, 44-11=33, 44-4=40, 44-2=42, 44-1=41,
%e A129510 22-11=11, 22-4=18, 22-2=20, 22-1=21,
%e A129510 11-4=7, 11-2=9, 11-1=10, 4-2=2, 4-1=3, 2-1=1,
%e A129510 a(44) = #{1,2,3,7,9,10,11,18,20,21,22,33,40,41,42} = 15;
%e A129510 n=45, set of divisors of 45 = {1,3,5,9,15,45}:
%e A129510 45-15=30, 45-9=36, 45-5=40, 45-3=42, 45-1=44,
%e A129510 15-9=6, 15-5=10, 15-3=12, 15-1=14,
%e A129510 9-5=4, 9-3=6, 9-1=8, 5-3=2, 5-1=4, 3-1=2,
%e A129510 a(45) = #{2,4,6,8,10,12,14,30,36,40,42,44} = 12.
%t A129510 a[n_]:=Length[Union[Flatten[Differences/@Subsets[Divisors[n],{2}]]]];Table[a[n],{n,88}] (* _James C. McMahon_, Jan 21 2025 *)
%o A129510 (PARI) a(n)=my(d=divisors(n),v=List()); for(i=1,#d-1,for(j=i+1,#d, listput(v,d[j]-d[i]))); #Set(v) \\ _Charles R Greathouse IV_, Aug 26 2015
%Y A129510 Cf. A000005.
%K A129510 nonn
%O A129510 1,4
%A A129510 _Reinhard Zumkeller_, Apr 19 2007