cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129519 First differences of the binomial transform of the distinct partition numbers (A000009).

This page as a plain text file.
%I A129519 #14 Oct 29 2020 03:23:59
%S A129519 1,1,2,5,12,28,65,151,350,807,1850,4221,9597,21760,49215,111032,
%T A129519 249856,560835,1255854,2805969,6256784,13925698,30941050,68634679,
%U A129519 152009239,336152787,742276931,1636747349,3604206106,7926412320,17410413153
%N A129519 First differences of the binomial transform of the distinct partition numbers (A000009).
%H A129519 Seiichi Manyama, <a href="/A129519/b129519.txt">Table of n, a(n) for n = 0..1000</a>
%F A129519 G.f.: A(x) = Product_{n>=1} [1 + x^n/(1-x)^n].
%F A129519 a(n) = A266232(n) - A266232(n-1), for n>0. - _Vaclav Kotesovec_, Oct 30 2017
%F A129519 a(n) ~ exp(Pi*sqrt(n/6) + Pi^2/48) * 2^(n - 9/4) / (3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Oct 30 2017
%e A129519 Product formula is illustrated by:
%e A129519 A(x) = [1 + x + x^2 + x^3 + x^4 + x^5 +...]*
%e A129519 [1 + x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 +...]*
%e A129519 [1 + x^3 + 3x^4 + 6x^5 + 10x^6 + 15x^7 +...]*
%e A129519 [1 + x^4 + 4x^5 + 10x^6 + 20x^7 + 35x^8 +...]*
%e A129519 [1 + x^5 + 5x^6 + 15x^7 + 35x^8 + 70x^9 +...]*...*
%e A129519 [1 + Sum_{k>=n+1} C(k-1,n)*x^k ]*...
%t A129519 Flatten[{1, Differences[Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 40}]]}] (* _Vaclav Kotesovec_, Oct 30 2017 *)
%o A129519 (PARI) {a(n)=polcoeff(prod(k=0,n,1+sum(i=k+1,n,binomial(i-1,k)*x^i +x*O(x^n))),n)}
%Y A129519 Cf. A000009, A218482, A266232, A307501.
%K A129519 nonn
%O A129519 0,3
%A A129519 _Paul D. Hanna_, Apr 18 2007