A129523 Numbers of the form 2^j +- 2^i for 0 <= i < j, in ascending order.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 20, 24, 28, 30, 31, 32, 33, 34, 36, 40, 48, 56, 60, 62, 63, 64, 65, 66, 68, 72, 80, 96, 112, 120, 124, 126, 127, 128, 129, 130, 132, 136, 144, 160, 192, 224, 240, 248, 252, 254, 255, 256, 257, 258, 260, 264, 272
Offset: 1
Keywords
Examples
1 = 2^1 - 2^0; 2 = 2^2 - 2^1; 3 = 2^1 + 2^0 or 2^2 - 2^0; 4 = 2^3 - 2^2; 5 = 2^2 + 2^0.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..1602
Programs
-
Mathematica
Union[Flatten[Table[{2^n, 2^n - 2^k, 2^n + 2^k}, {n, 8}, {k, 0, n - 1}]]] (* Ivan Neretin, Jul 29 2015 *)
-
Octave
x=[]; m=12; for i = 0:m; x=[x,2^i-2.^([(i-2):-1:0]),2^i,2^i+2.^([0 :(i-2)])]; end; x
Formula
x(n) = { 2^x - 2^y if x < y }, { 2^x if x = y }, { 2^x + 2^y if x > y} where x = ceiling(sqrt(n)) and y = n - (x-1)^2 - 1.
Comments