cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129531 Triangle read by rows: T(n,k) is the number of 4-ary words of length n on {0,1,2,3} having k inversions (n >= 0, k >= 0).

Original entry on oeis.org

1, 4, 10, 6, 20, 20, 20, 4, 35, 45, 65, 60, 35, 15, 1, 56, 84, 144, 180, 200, 152, 120, 60, 24, 4, 84, 140, 266, 386, 526, 584, 590, 524, 424, 290, 164, 86, 26, 6, 120, 216, 440, 700, 1064, 1384, 1720, 1844, 1940, 1820, 1616, 1272, 956, 620, 380, 184, 80, 24, 4
Offset: 0

Views

Author

Emeric Deutsch, Apr 22 2007

Keywords

Comments

Row n has (apparently) ceiling((3n^2+4)/8) terms.
Row sums are equal to 4^n = A000302(n).
Alternating row sums are 4^(ceiling(n/2)).
T(n,0) = (n+1)*(n+2)(n+3)/6 = A000292(n+1).
Sum_{k>=0} k*T(n,k) = 3*n*(n-1)*4^(n-2) = A129532(n).
This sequence is mentioned in the Andrews-Savage-Wilf paper. - Omar E. Pol, Jan 30 2012

Examples

			T(2,1)=6 because we have 10, 20, 30, 21, 31 and 32.
Triangle starts:
   1;
   4;
  10,   6;
  20,  20,  20,   4;
  35,  45,  65,  60,  35,  15,   1;
  56,  84, 144, 180, 200, 152, 120,  60,  24,   4;
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
  • M. Bona, Combinatorics of Permutations, Chapman & Hall/CRC, Boca Raton, FL, 2004, pp. 57-61.

Crossrefs

Programs

  • Maple
    for n from 0 to 12 do br[n]:=sum(q^i,i=0..n-1) od: for n from 0 to 12 do f[n]:=simplify(product(br[j],j=1..n)) od: mbr:=(n,a,b,c,d)->simplify(f[n]/f[a]/f[b]/f[c]/f[d]): for n from 0 to 8 do G[n]:=sort(simplify(sum(sum(sum(mbr(n,a,b,c,n-a-b-c),c=0..n-a-b),b=0..n-a),a=0..n))) od: for n from 0 to 8 do seq(coeff(G[n],q,j),j=0..ceil((3*n^2-4)/8)) od; # yields sequence in triangular form

Formula

Generating polynomial of row n is Sum_{a=0..n} Sum_{b=0..n-a} Sum_{c=0..n-a-b} binomial[n; a,b,c,n-a-b-c], where binomial[n;a,b,c,d] (a+b+c+d=n) is a q-multinomial coefficient.