A129534 Triangle read by rows: T(n,k) = number of permutations p of 1,...,n, with min(|p(i)-p(i-1)|, i=2..n) = k (n>=2, k>=1).
2, 6, 22, 2, 106, 14, 630, 88, 2, 4394, 614, 32, 35078, 4874, 366, 2, 315258, 43638, 3912, 72, 3149494, 435002, 42808, 1494, 2, 34620010, 4775184, 496222, 25224, 160, 415222566, 57214716, 6164470, 393792, 6054, 2, 5395737242, 742861262, 82190752, 6070408, 160784, 352
Offset: 2
Examples
T(4,2) = 2 because we have 3142 and 2413. Triangle starts: 2; 6; 22, 2; 106, 14; 630, 88, 2; 4394, 614, 32; ...
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.40.
Links
- Alois P. Heinz, Rows n = 2..18, flattened
Programs
-
Maple
k:=3: with(combinat): a:=proc(n) local P,ct,i: P:=permute(n): ct:=0: for i from 1 to n! do if min(seq(abs(P[i][j]-P[i][j-1]),j=2..n))=k then ct:=ct+1 else ct:=ct: fi: od: ct: end: seq(a(n),n=2..8); # yields the first 7 entries in any specified column k
Extensions
More terms from R. J. Mathar, Oct 11 2007
Comments