cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129535 Number of permutations of 1,...,n with at least one pair of adjacent consecutive entries (i.e., of the form k(k+1) or (k+1)k), n >= 2.

This page as a plain text file.
%I A129535 #14 Jul 26 2022 13:58:37
%S A129535 2,6,22,106,630,4394,35078,315258,3149494,34620010,415222566,
%T A129535 5395737242,75516784982,1132471183626,18115911832390,307919970965434,
%U A129535 5541804787940598,105282261866132138,2105441434230129254,44210612765653749210,972564180363044943766
%N A129535 Number of permutations of 1,...,n with at least one pair of adjacent consecutive entries (i.e., of the form k(k+1) or (k+1)k), n >= 2.
%C A129535 Column 1 of A129534. a(n) = n! - A002464(n).
%C A129535 Column k=2 of A322481.
%D A129535 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.40.
%H A129535 Alois P. Heinz, <a href="/A129535/b129535.txt">Table of n, a(n) for n = 2..450</a>
%F A129535 G.f.: E(x) - E(x(1-x)/(1+x)), where E(x) = Sum_{n>=0} n!*x^n.
%F A129535 a(n) = n! - Sum_{k=1..n} ((-1)^(n-k)*k!*Sum_{i=0..n-k} binomial(i+k-1, k-1)*binomial(k, n-i-k)), n > 0. - _Vladimir Kruchinin_, Sep 08 2010
%F A129535 D-finite with recurrence a(n) +2*(-n+1)*a(n-1) +(n^2-2*n-2)*a(n-2) +(-n^2+7*n-14)*a(n-3) -(n-3)*(n-5)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - _R. J. Mathar_, Jul 26 2022
%e A129535 a(4)=22 because 3142 and 2413 are the only permutations of 1,2,3,4 with no adjacent consecutive entries.
%p A129535 E:=x->sum(n!*x^n,n=0..35): G:=E(x)-E(x*(1-x)/(1+x)): Gser:=series(G,x=0,30): seq(coeff(Gser,x,n),n=2..23);
%Y A129535 Cf. A002464, A129534, A322481.
%K A129535 nonn
%O A129535 2,1
%A A129535 _Emeric Deutsch_, May 05 2007