cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129536 Number parallelogram based on Pascal's triangle (and special mirror of central and multiply of diagonal).

This page as a plain text file.
%I A129536 #14 May 09 2025 23:12:17
%S A129536 45,9,36,1,16,28,3,21,21,6,24,15,10,25,10,15,24,6,21,21,3,28,16,1,36,
%T A129536 9,45
%N A129536 Number parallelogram based on Pascal's triangle (and special mirror of central and multiply of diagonal).
%C A129536 Sequence arrangement:
%C A129536 ....................C(10,2)*C(0,0)
%C A129536 .............C(9,1)*C(1,1)...C(9,2)*C(1,0)
%C A129536 .....C(8,0)*C(2,2)...C(8,1)*C(2,1)...C(8,2)*C(2,0)
%C A129536 ..............C(7,0)*C(3,2)...C(7,1)*C(3,1)...C(7,2)*C(3,0)
%C A129536 .....................C(6,0)*C(4,2)...C(6,1)*C(4,1)...C(6,2)*C(4,0)
%C A129536 .............................C(5,0)*C(5,2)...C(5,1)*C(5,1)...C(5,2)*C(5,0)
%C A129536 .....................................C(4,0)*C(6,2)...C(4,1)*C(6,1)...C(4,2)*C(6,0)
%C A129536 .............................................C(3,0)*C(7,2)...C(3,1)*C(7,1)...C(3,2)*C(7,0)
%C A129536 .....................................................C(2,0)*C(8,2)...C(2,1)*C(8,1)...C(2,2)*C(8,0)
%C A129536 .............................................................C(1,0)*C(9,2)...C(1,1)*C(9,1)
%C A129536 .....................................................................C(0,0)*C(10,2)
%C A129536 "m" matching: analog (permutations with exactly "m" fixed points.
%C A129536 if aabbbbbbbb (a twice letters b 8 times letters) permutations compared aaaaaaaaaa (a 10 times letters) then 45 * "2" matching.(sum 45)("2" matching: analog(permutations with exactly 2 fixed points.)
%C A129536 if compared bbbbbbbbbb (b 10 times letters then 45 * "8" matching.(sum 45)
%C A129536 ("8" matching: analog (permutations with exactly 8 fixed points.).
%C A129536 If aabbbbbbbb (a 2 letters b 8 letters) permutations compared
%C A129536 aabbbbbbbb (a twice letters b 8 times letters)then 1 * "10"
%C A129536 matching),16 * "8" matching, 28 * "6" matching (sum 45)
%C A129536 If aabbbbbbbb (a 8 letters b 2 letters)permutations compared
%C A129536 aaaaaaaabb (a 8 times letters b twice letters)then 1 * "0"
%C A129536 matching),16 * "2" matching, 28 * "4" matching (sum 45)
%C A129536 all rows (sum 45)
%C A129536 etc...
%C A129536 matching equialent or analog "fixed points"
%C A129536 example:
%C A129536 arrangement relevant!
%C A129536 compared
%C A129536 letters..
%C A129536 times....
%C A129536 a...b
%C A129536 matching:..........0..1..2..3..4..5..6..7..8..9..10 0..10...................45.........................
%C A129536 .1..9.................9....36......................
%C A129536 .2..8..............1.....16....28..................
%C A129536 .3..7.................3....21.....21................
%C A129536 .4..6....................6....24....15............
%C A129536 .5..5......................10....25.....10.........
%C A129536 .6..4.........................15....24.....6........
%C A129536 .7..3.............................21....21.....3....
%C A129536 .8..2................................28....16......1
%C A129536 .9..1...................................36.....9....
%C A129536 10..0......................................45.......
%C A129536 matching:...........0..1..2..3..4..5..6..7..8..9..10
%C A129536 The Maple code produces this:
%C A129536 45, 36, 28, 21, 15, 10, 6, 3, 1
%C A129536 9, 16, 21, 24, 25, 24, 21, 16, 9
%C A129536 1, 3, 6, 10, 15, 21, 28, 36, 45
%C A129536 This is the table rotated right by Pi/4.
%H A129536 Johnph77, <a href="https://web.archive.org/web/20090627142143/http://www.johnph77.com/math/lf.html#c4094">Lottery Numeric Positional Frequency Charts</a> Note:Information herein is intended for lottery system developers, analysts and operators. It is not intended for gaming purposes. 3/11 table: (Horizontal > Total: 165, Vertical > Total: 45)
%p A129536 with(combinat):T:=(n,i)->binomial(i,n)*binomial(10-i,2-n): for n from 0 to 2 do seq(T(n, i), i=0+n..10-2+n) od;
%Y A129536 Cf. A113899.
%K A129536 fini,nonn,uned
%O A129536 0,1
%A A129536 _Zerinvary Lajos_, May 29 2007
%E A129536 Edited by _Charles R Greathouse IV_, Oct 28 2009