cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129537 Prime numbers p of the form p=x^2+y^3 such that there exist three other prime numbers q,r,s such q=abs(x^2-y^3) ; r=x^3+y^2 ; s=abs(x^3-y^2); x > y.

Original entry on oeis.org

127, 449, 811, 2089, 2521, 4651, 4969, 6427, 13697, 17351, 23831, 38393, 52321, 53569, 69119, 69767, 112571, 113021, 116089, 143257, 156941, 168409, 171757, 196561, 197569, 228751, 250489, 250969, 294641, 328121, 337627, 350281, 355321
Offset: 1

Views

Author

Tomas Xordan, May 29 2007

Keywords

Examples

			p=a(1)= 127 because:
P=127=10^2+3^3=100+27;
q=73=10^2-3^3=100-27;
r=1009=10^3+3^2=1000+9;
s=991=10^3-3^2=1000-9
		

Crossrefs

Cf. A000040.

Formula

a(n)=p=x^2+y^3; q=x^2-y3;r=x^3+y^2;s=x^3-y^2 ; x > y ; a(n),q,r,s are prime numbers.