cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129660 Numerators of the Engel partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.

This page as a plain text file.
%I A129660 #9 Dec 10 2016 03:03:15
%S A129660 0,1,3,7,99,9307,3462205,401327263,5290639975663,21886143096656843,
%T A129660 32306573547837099089161,2837034062676862693613762377,
%U A129660 182184397885888753164448171682621
%N A129660 Numerators of the Engel partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
%D A129660 Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
%F A129660 chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
%F A129660 Series: L(3, chi3) = Sum_{k>=1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
%F A129660 Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
%e A129660 L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/2 + 1/(2*2) + 1/(2*2*2) + 1/(2*2*2*14) + 1/(2*2*2*14*94) + ..., the partial sums of which are 0, 1/2, 3/4, 7/8, 99/112, 9307/10528, ...
%t A129660 nmax = 100; prec = 2000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; e = First@Transpose@NestList[{Ceiling[1/(#[[1]] #[[2]] - 1)], #[[1]] #[[2]] - 1}&, {Ceiling[1/c], c}, nmax - 1]; Numerator[ FoldList[Plus, 0, 1/Drop[ FoldList[Times, 1, e], 1 ] ] ]
%Y A129660 Cf. A129404, A129405, A129406, A129407, A129408, A129409, A129410, A129411.
%Y A129660 Cf. A129658, A129659, A129661, A129662, A129663, A129664, A129665.
%K A129660 nonn,frac,easy
%O A129660 0,3
%A A129660 _Stuart Clary_, Apr 30 2007