cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129661 Denominators of the Engel partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.

This page as a plain text file.
%I A129661 #4 Dec 09 2016 13:21:53
%S A129661 1,2,4,8,112,10528,3916416,453977888,5984725643520,24757413551258752,
%T A129661 36544913291284069002240,3209228105587401803500707840,
%U A129661 206085396642453387914503205007360
%N A129661 Denominators of the Engel partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
%D A129661 Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
%F A129661 chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
%F A129661 Series: L(3, chi3) = Sum_{k=1..infinity} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
%F A129661 Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
%e A129661 L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/2 + 1/(2*2) + 1/(2*2*2) + 1/(2*2*2*14) + 1/(2*2*2*14*94) + ..., the partial sums of which are 0, 1/2, 3/4, 7/8, 99/112, 9307/10528, ...
%t A129661 nmax = 100; prec = 2000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; e = First@Transpose@NestList[{Ceiling[1/(#[[1]] #[[2]] - 1)], #[[1]] #[[2]] - 1}&, {Ceiling[1/c], c}, nmax - 1]; Denominator[ FoldList[Plus, 0, 1/Drop[ FoldList[Times, 1, e], 1 ] ] ]
%Y A129661 Cf. A129404, A129405, A129406, A129407, A129408, A129409, A129410, A129411.
%Y A129661 Cf. A129658, A129659, A129660, A129662, A129663, A129664, A129665.
%K A129661 nonn,frac,easy
%O A129661 0,2
%A A129661 _Stuart Clary_, Apr 30 2007