cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129662 Numerators of the Pierce partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.

This page as a plain text file.
%I A129662 #4 Dec 09 2016 13:20:52
%S A129662 0,1,7,23,1471,94145,327200947,6435419387591,3576528877557150803,
%T A129662 528385432191928134753762821,98874483030041554423376610821029,
%U A129662 1056201236231124272980670932252118118619723
%N A129662 Numerators of the Pierce partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
%D A129662 Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
%F A129662 chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
%F A129662 Series: L(3, chi3) = Sum_{k=1..infinity} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
%F A129662 Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
%e A129662 L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/1 - 1/(1*8) + 1/(1*8*13) - 1/(1*8*13*16) + 1/(1*8*13*16*64) - ..., the partial sums of which are 0, 1, 7/8, 23/26, 1471/1664, 94145/106496, ...
%t A129662 nmax = 100; prec = 3000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; p = First@Transpose@NestList[{Floor[ 1/(1 - #[[1]] #[[2]]) ], 1 - #[[1]] #[[2]]}&, {Floor[1/c], c}, nmax - 1]; p = Drop[ FoldList[Times, 1, p], 1 ]; Numerator[ FoldList[ Plus, 0, (-1)^Range[0, Length[p] - 1]/p ] ]
%Y A129662 Cf. A129404, A129405, A129406, A129407, A129408, A129409, A129410, A129411.
%Y A129662 Cf. A129658, A129659, A129660, A129661, A129663, A129664, A129665.
%K A129662 nonn,frac,easy
%O A129662 0,3
%A A129662 _Stuart Clary_, Apr 30 2007