A129663 Denominators of the Pierce partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
1, 1, 8, 26, 1664, 106496, 370126848, 7279690096640, 4045738169062195200, 597704977138451388530688000, 111845949979901797334235660288000, 1194765595895193218918930427630975811584000
Offset: 0
Examples
L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/1 - 1/(1*8) + 1/(1*8*13) - 1/(1*8*13*16) + 1/(1*8*13*16*64) - ..., the partial sums of which are 0, 1, 7/8, 23/26, 1471/1664, 94145/106496, ...
References
- Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
Crossrefs
Programs
-
Mathematica
nmax = 100; prec = 3000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; p = First@Transpose@NestList[{Floor[ 1/(1 - #[[1]] #[[2]]) ], 1 - #[[1]] #[[2]]}&, {Floor[1/c], c}, nmax - 1]; p = Drop[ FoldList[Times, 1, p], 1 ]; Denominator[ FoldList[ Plus, 0, (-1)^Range[0, Length[p] - 1]/p ] ]
Formula
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = Sum_{k=1..infinity} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).