cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129664 Numerators of the greedy Egyptian partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.

This page as a plain text file.
%I A129664 #4 Dec 09 2016 13:19:44
%S A129664 0,1,5,53,25619,73767966817,388826530522004941794623,
%T A129664 226073434564505101198889656344981223287273794070917,
%U A129664 302470760179203901700754265690364240921018701177125350099844323581396873793766696160680079412655525143887
%N A129664 Numerators of the greedy Egyptian partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
%D A129664 Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
%F A129664 chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
%F A129664 Series: L(3, chi3) = Sum_{k=1..infinity} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
%F A129664 Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
%e A129664 L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/2 + 1/3 + 1/20 + 1/1449 + 1/2879423 + ..., the partial sums of which are 0, 1/2, 5/6, 53/60, 25619/28980, 73767966817/83445678540, ...
%t A129664 nmax = 12; prec = 2000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; e = First@Transpose@NestList[{Ceiling[1/(#[[2]] - 1/#[[1]])], #[[2]] - 1/#[[1]]}&, {Ceiling[1/c], c}, nmax - 1]; Numerator[ FoldList[Plus, 0, 1/e] ]
%Y A129664 Cf. A129404, A129405, A129406, A129407, A129408, A129409, A129410, A129411.
%Y A129664 Cf. A129658, A129659, A129660, A129661, A129662, A129663, A129665.
%K A129664 nonn,frac,easy
%O A129664 0,3
%A A129664 _Stuart Clary_, Apr 30 2007