cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129665 Denominators of the greedy Egyptian partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.

This page as a plain text file.
%I A129665 #4 Dec 09 2016 13:19:12
%S A129665 1,2,6,60,28980,83445678540,439837168811386168898460,
%T A129665 255732290872293553071304874994266857210112979247740,
%U A129665 342152277075444487917411768449441971426262505651282338530700909926424044202121143490579209389129867953540
%N A129665 Denominators of the greedy Egyptian partial sums for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
%D A129665 Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
%F A129665 chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
%F A129665 Series: L(3, chi3) = Sum_{k=1..infinity} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
%F A129665 Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
%e A129665 L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/2 + 1/3 + 1/20 + 1/1449 + 1/2879423 + ..., the partial sums of which are 0, 1/2, 5/6, 53/60, 25619/28980, 73767966817/83445678540, ...
%t A129665 nmax = 12; prec = 2000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; e = First@Transpose@NestList[{Ceiling[1/(#[[2]] - 1/#[[1]])], #[[2]] - 1/#[[1]]}&, {Ceiling[1/c], c}, nmax - 1]; Denominator[ FoldList[Plus, 0, 1/e] ]
%Y A129665 Cf. A129404, A129405, A129406, A129407, A129408, A129409, A129410, A129411.
%Y A129665 Cf. A129658, A129659, A129660, A129661, A129662, A129663, A129664.
%K A129665 nonn,frac,easy
%O A129665 0,2
%A A129665 _Stuart Clary_, Apr 30 2007