A129706 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k inversions (n>=0, 0<=k<=floor(n(n+1)/6)). A Fibonacci binary word is a binary word having no 00 subword.
1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 4, 4, 4, 2, 1, 2, 2, 2, 4, 4, 6, 6, 4, 2, 2, 2, 2, 2, 4, 4, 6, 8, 8, 6, 6, 4, 2, 1, 2, 2, 2, 4, 4, 6, 8, 10, 10, 10, 10, 8, 6, 4, 2, 1, 2, 2, 2, 4, 4, 6, 8, 10, 12, 14, 14, 14, 14, 12, 10, 8, 4, 2, 2, 2, 2, 2, 4, 4, 6, 8, 10, 12, 16, 18, 18, 20
Offset: 0
Examples
T(5,3)=4 because we have 11101, 10101, 01110 and 01010. Triangle starts: 1; 2; 2,1; 2,2,1; 2,2,2,2; 2,2,2,4,2,1; 2,2,2,4,4,4,2,1;
Programs
-
Maple
Q[0]:=1: Q[1]:=1+x: for n from 2 to 12 do Q[n]:=expand(x*Q[n-1]+t*x*subs(x=t*x,Q[n-2])) od: for n from 0 to 15 do P[n]:=sort(subs(x=1,Q[n])) od: for n from 0 to 12 do seq(coeff(P[n],t,j),j=0..floor(n*(n+1)/6)) od; # yields sequence in triangular form
Formula
G.f.=G(t,z)=H(t,1,z), where H(t,x,z)=1+z+xzH(t,x,z)+txz^2*H(t,tx,z). Row generating polynomials P[n] are given by P[n](t)=Q[n](t,1), where Q[0]=1, Q[1]=1+x, Q[n](t,x)=xQ[n-1](t,x)+txQ[n-2](t,tx) for n>=2.
Comments