cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129707 Number of inversions in all Fibonacci binary words of length n.

This page as a plain text file.
%I A129707 #37 Nov 14 2024 15:18:24
%S A129707 0,0,1,4,12,31,73,162,344,707,1416,2778,5358,10188,19139,35582,65556,
%T A129707 119825,217487,392286,703618,1255669,2230608,3946020,6954060,12212280,
%U A129707 21377365,37309288,64935132,112726771,195224773,337343034,581700476
%N A129707 Number of inversions in all Fibonacci binary words of length n.
%C A129707 A Fibonacci binary word is a binary word having no 00 subword.
%H A129707 Michael De Vlieger, <a href="/A129707/b129707.txt">Table of n, a(n) for n = 0..4754</a>
%H A129707 Kálmán Liptai, László Németh, Tamás Szakács, and László Szalay, <a href="https://arxiv.org/abs/2403.15053">On certain Fibonacci representations</a>, arXiv:2403.15053 [math.NT], 2024. See p. 2.
%H A129707 Tamás Szakács, <a href="https://hdl.handle.net/2437/381856">Linear recursive sequences and factorials</a>, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 2.
%H A129707 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-5,0,3,1).
%F A129707 a(n) = Sum_{k>=0} k*A129706(n,k).
%F A129707 G.f.: z^2*(1+z)/(1-z-z^2)^3.
%F A129707 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + F(n), a(0)=a(1)=0, a(2)=1, a(3)=4.
%F A129707 a(n-3) = ((5*n^2 - 37*n + 50)*F(n-1) + 4*(n-1)*F(n))/50 = (-1)^n*A055243(-n). - _Peter Bala_, Oct 25 2007
%F A129707 a(n) = A001628(n-3) + A001628(n-2). - _R. J. Mathar_, Dec 07 2011
%F A129707 a(n+1) = A123585(n+2,n). - _Philippe Deléham_, Dec 18 2011
%F A129707 a(n) = Sum_{k=floor((n-1)/2)..n-1}  k*(k+1)/2*C(k,n-k-1). - _Vladimir Kruchinin_, Sep 17 2020
%e A129707 a(3)=4 because the Fibonacci words 110,111,101,010,011 have a total of 2 + 0 + 1 + 1 + 0 = 4 inversions.
%p A129707 with(combinat): a[0]:=0: a[1]:=0: a[2]:=1: a[3]:=4: for n from 4 to 40 do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]-a[n-4]+fibonacci(n) od: seq(a[n],n=0..40);
%t A129707 CoefficientList[Series[x^2*(1 + x)/(1 - x - x^2)^3, {x,0,50}], x] (* _G. C. Greubel_, Mar 04 2017 *)
%o A129707 (PARI) x='x+O('x^50); concat([0,0], Vec(x^2*(1 + x)/(1 - x - x^2)^3)) \\ _G. C. Greubel_, Mar 04 2017
%o A129707 (Maxima)
%o A129707 a(n) = sum(k*(k+1)*binomial(k,n-k-1),k,floor((n-1)/2),n-1)/2; /* _Vladimir Kruchinin_, Sep 17 2020 */
%Y A129707 Cf. A129706.
%Y A129707 Cf. A055243.
%K A129707 nonn,easy
%O A129707 0,4
%A A129707 _Emeric Deutsch_, May 12 2007