This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129707 #37 Nov 14 2024 15:18:24 %S A129707 0,0,1,4,12,31,73,162,344,707,1416,2778,5358,10188,19139,35582,65556, %T A129707 119825,217487,392286,703618,1255669,2230608,3946020,6954060,12212280, %U A129707 21377365,37309288,64935132,112726771,195224773,337343034,581700476 %N A129707 Number of inversions in all Fibonacci binary words of length n. %C A129707 A Fibonacci binary word is a binary word having no 00 subword. %H A129707 Michael De Vlieger, <a href="/A129707/b129707.txt">Table of n, a(n) for n = 0..4754</a> %H A129707 Kálmán Liptai, László Németh, Tamás Szakács, and László Szalay, <a href="https://arxiv.org/abs/2403.15053">On certain Fibonacci representations</a>, arXiv:2403.15053 [math.NT], 2024. See p. 2. %H A129707 Tamás Szakács, <a href="https://hdl.handle.net/2437/381856">Linear recursive sequences and factorials</a>, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 2. %H A129707 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-5,0,3,1). %F A129707 a(n) = Sum_{k>=0} k*A129706(n,k). %F A129707 G.f.: z^2*(1+z)/(1-z-z^2)^3. %F A129707 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) + F(n), a(0)=a(1)=0, a(2)=1, a(3)=4. %F A129707 a(n-3) = ((5*n^2 - 37*n + 50)*F(n-1) + 4*(n-1)*F(n))/50 = (-1)^n*A055243(-n). - _Peter Bala_, Oct 25 2007 %F A129707 a(n) = A001628(n-3) + A001628(n-2). - _R. J. Mathar_, Dec 07 2011 %F A129707 a(n+1) = A123585(n+2,n). - _Philippe Deléham_, Dec 18 2011 %F A129707 a(n) = Sum_{k=floor((n-1)/2)..n-1} k*(k+1)/2*C(k,n-k-1). - _Vladimir Kruchinin_, Sep 17 2020 %e A129707 a(3)=4 because the Fibonacci words 110,111,101,010,011 have a total of 2 + 0 + 1 + 1 + 0 = 4 inversions. %p A129707 with(combinat): a[0]:=0: a[1]:=0: a[2]:=1: a[3]:=4: for n from 4 to 40 do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]-a[n-4]+fibonacci(n) od: seq(a[n],n=0..40); %t A129707 CoefficientList[Series[x^2*(1 + x)/(1 - x - x^2)^3, {x,0,50}], x] (* _G. C. Greubel_, Mar 04 2017 *) %o A129707 (PARI) x='x+O('x^50); concat([0,0], Vec(x^2*(1 + x)/(1 - x - x^2)^3)) \\ _G. C. Greubel_, Mar 04 2017 %o A129707 (Maxima) %o A129707 a(n) = sum(k*(k+1)*binomial(k,n-k-1),k,floor((n-1)/2),n-1)/2; /* _Vladimir Kruchinin_, Sep 17 2020 */ %Y A129707 Cf. A129706. %Y A129707 Cf. A055243. %K A129707 nonn,easy %O A129707 0,4 %A A129707 _Emeric Deutsch_, May 12 2007