cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129709 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 011 subwords (0<=k<=floor(n/3)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 3, 6, 7, 7, 13, 1, 8, 22, 4, 9, 34, 12, 10, 50, 28, 1, 11, 70, 58, 5, 12, 95, 108, 18, 13, 125, 188, 50, 1, 14, 161, 308, 121, 6, 15, 203, 483, 261, 25, 16, 252, 728, 520, 80, 1, 17, 308, 1064, 968, 220, 7, 18, 372, 1512, 1710, 536, 33, 19, 444, 2100
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Also number of Fibonacci binary words of length n and having k 110 subwords. Row n has 1+floor(n/3) terms. Row sums are the Fibonacci numbers (A000045). T(n,0)=n+1. Sum(k*T(n,k), k>=0)=A023610(n-3).

Examples

			T(7,2)=4 because we have 1011011,0111011,0110110 and 0110111.
Triangle starts:
1;
2;
3;
4,1;
5,3;
6,7;
7,13,1;
8,22,4;
9,34,12;
10,50,28,1;
		

Crossrefs

Programs

  • Maple
    G:=(1+z)/(1-z-z^2+z^3-t*z^3): Gser:=simplify(series(G,z=0,23)): for n from 0 to 20 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 20 do seq(coeff(P[n],t,j),j=0..floor(n/3)) od; # yields sequence in triangular form

Formula

G.f.=G(t,z)=(1+z)/(1-z-z^2+z^3-tz^3).