A129712 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and starting with exactly k 10's (0<=k<=floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.
1, 2, 2, 1, 4, 1, 6, 1, 1, 10, 2, 1, 16, 3, 1, 1, 26, 5, 2, 1, 42, 8, 3, 1, 1, 68, 13, 5, 2, 1, 110, 21, 8, 3, 1, 1, 178, 34, 13, 5, 2, 1, 288, 55, 21, 8, 3, 1, 1, 466, 89, 34, 13, 5, 2, 1, 754, 144, 55, 21, 8, 3, 1, 1, 1220, 233, 89, 34, 13, 5, 2, 1, 1974, 377, 144, 55, 21, 8, 3, 1, 1
Offset: 0
Examples
T(7,2)=2 because we have 1010110 and 1010111. Triangle starts: 1; 2; 2,1; 4,1; 6,1,1; 10,2,1; 16,3,1,1; 26,5,2,1;
Programs
-
Maple
with(combinat): T:=proc(n,k) if k=0 and n=0 then 1 elif k=0 then 2*fibonacci(n) elif n=2*k or n=2*k+1 then 1 elif n>2*k+1 then fibonacci(n-2*k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od;
Formula
T(0,0)=1, T(n,0)=2F(n) for n>=1, T(2k,k)=T(2k+1,k)=1 for k>=1, T(n,k)=F(n-2k) for 1<=k<(n-1)/2. G.f.=G(t,z)=(1+z-z^2-t*z^3)/[(1-z-z^2)(1-t*z^2)].
Comments