A129720 Number of 0's in odd position in all Fibonacci binary words of length n. A Fibonacci binary word is a binary word having no 00 subword.
0, 1, 1, 4, 5, 14, 19, 46, 65, 145, 210, 444, 654, 1331, 1985, 3926, 5911, 11434, 17345, 32960, 50305, 94211, 144516, 267384, 411900, 754309, 1166209, 2116936, 3283145, 5914310, 9197455, 16458034, 25655489, 45638101, 71293590, 126159156
Offset: 0
Keywords
Examples
a(4)=5 because in 1110, 1111, 110'1, 1010, 1011, 0'110, 0'111 and 0'10'1 one has altogether five 0's in odd position (marked by ').
Links
- É. Czabarka, R. Flórez, L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
Programs
-
Maple
g:=z*(1-z^2)/(1-z-z^2)^2/(1+z-z^2): gser:=series(g,z=0,43): seq(coeff(gser,z,n),n=0..40);