This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129724 #13 Sep 08 2022 08:45:30 %S A129724 1,2,3,7,24,116,720,5160,40320,350784,3628800,42940800,479001600, %T A129724 4650877440,87178291200,2833294464000,20922789888000, %U A129724 -2166903606067200,6402373705728000,6808619561103360000,2432902008176640000,-26982365129174827008000,1124000727777607680000 %N A129724 a(0) = 1; then a(n) = n!*(1 - (-1)^n*Bernoulli(n-1)). %H A129724 G. C. Greubel, <a href="/A129724/b129724.txt">Table of n, a(n) for n = 0..300</a> %p A129724 a:= proc(n) %p A129724 if n=0 and n>=0 then 1 %p A129724 elif n mod 2 = 0 then n!*(1 - bernoulli(n-1)) %p A129724 else n!*(1 + bernoulli(n-1)) %p A129724 fi; end; %p A129724 seq(a(n), n=0..25); # modified by _G. C. Greubel_, Dec 03 2019 %t A129724 a[0] = 1; a[n_]:= n!*(1-(-1)^n*BernoulliB[n-1]); Table[a[n], {n, 0, 22}] (* _Jean-François Alcover_, Sep 16 2013 *) %o A129724 (PARI) a(n) = if(n==0, 1, n!*(1 - (-1)^n*bernfrac(n-1)) ); \\ _G. C. Greubel_, Dec 03 2019 %o A129724 (Magma) [n eq 0 select 1 else Factorial(n)*(1 - (-1)^n*Bernoulli(n-1)): n in [0..25]]; // _G. C. Greubel_, Dec 03 2019 %o A129724 (Sage) [1]+[factorial(n)*(1 - (-1)^n*bernoulli(n-1)) for n in (1..25)] # _G. C. Greubel_, Dec 03 2019 %o A129724 (GAP) Concatenation([1], List([1..25], n-> Factorial(n)*(1 - (-1)^n*Bernoulli(n-1)) )); # _G. C. Greubel_, Dec 03 2019 %Y A129724 Cf. A027641, A027642, A051716, A051717, A129825, A129826. %K A129724 sign %O A129724 0,2 %A A129724 _Paul Curtz_, Jun 02 2007 %E A129724 Edited with simpler definition by _N. J. A. Sloane_, May 25 2008