A129735 List of primitive prime divisors of the numbers (4^n-1)/3 (A002450) in their order of occurrence.
5, 3, 7, 17, 11, 31, 13, 43, 127, 257, 19, 73, 41, 23, 89, 683, 241, 2731, 8191, 29, 113, 151, 331, 65537, 43691, 131071, 37, 109, 174763, 524287, 61681, 337, 5419, 397, 2113, 47, 178481, 2796203, 97, 673, 251, 601, 1801, 4051, 53, 157, 1613, 87211, 262657, 15790321, 59, 233, 1103, 2089, 3033169, 61, 1321, 715827883, 2147483647
Offset: 1
Keywords
Examples
The primes grouped according to successive terms of A002450, courtesy of _James R. Buddenhagen_: [5], [3, 7], [17], [11, 31], [13], [43, 127], [257], [19, 73], [41], [23, 89, 683], [241], [2731, 8191], [29, 113], [151, 331], [65537], [43691, 131071], [37, 109], [174763, 524287], [61681], [337, 5419], [397, 2113], [47, 178481, 2796203], [97, 673], [251, 601, 1801, 4051], [53, 157, 1613], [87211, 262657], [15790321], [59, 233, 1103, 2089, 3033169], [61, 1321], [715827883, 2147483647], ...
Links
- James R. Buddenhagen, List giving n followed by primitive prime divisors of (4^n-1)/3 for n=1..70
- G. Everest, S. Stevens, D. Tamsett and T. Ward, Primes Generated by Recurrence Sequences, 2006.
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- Wikipedia, Zsigmondy's theorem
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
Extensions
Order of terms corrected by James R. Buddenhagen, Jul 23 2015
Comments