cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129759 For the Landau function L(n), A000793, this sequence gives the largest prime which is a factor of L(n).

This page as a plain text file.
%I A129759 #30 Feb 16 2025 08:33:06
%S A129759 1,2,3,2,3,3,3,5,5,5,5,5,5,7,7,7,7,7,7,7,7,7,7,7,7,7,11,11,7,11,11,13,
%T A129759 13,11,11,11,11,13,13,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,
%U A129759 13,17,17,17,17,17,19,19,17,17,17,17,19,19,17,17,19,19,19,19,19,19,17,19
%N A129759 For the Landau function L(n), A000793, this sequence gives the largest prime which is a factor of L(n).
%C A129759 This function is not monotone increasing, for example a(33) = 13 while a(34) = 11.
%C A129759 Nicolas showed that a(n) ~ sqrt(n log n) and Grantham showed that a(n) <= 1.328 sqrt(n log n) for n > 4. Massias, Nicolas, & Robin conjecture that a(n) <= 1.265... sqrt(n log n) in this range with equality at n = 215. - _Charles R Greathouse IV_, Jun 02 2014
%H A129759 Alois P. Heinz, <a href="/A129759/b129759.txt">Table of n, a(n) for n = 1..10000</a>
%H A129759 Jon Grantham, <a href="http://www.pseudoprime.com/maxord.html">The largest prime divisor of the maximal order of an element of S_n</a>, Math. Comp. 64:209 (1995), pp. 407-410.
%H A129759 J. P. Massias, J. L. Nicolas and G. Robin, <a href="http://math.univ-lyon1.fr/~nicolas/gdenMathComp.pdf">Effective bounds for the maximal order of an element in the symmetric group</a>, Math. Comp. 53:188 (1989), pp. 665-678. [<a href="https://doi.org/10.1090/S0025-5718-1989-0979940-4">alternate link</a>]
%H A129759 Jean-Louis Nicolas, <a href="https://doi.org/10.24033/bsmf.1676">Ordre maximal d'un élément du groupe S_n des permutations et 'highly composite numbers'</a>, Bull. Soc. Math. France 97 (1969), 129-191.
%H A129759 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LandausFunction.html">Landau's Function</a>
%F A129759 a(n) = A006530(A000793(n)). - _R. J. Mathar_, May 17 2007
%e A129759 L(29) = 2520, whose largest prime factor is 7. So a(29) = 7.
%t A129759 b[n_, i_] := b[n, i] = Module[{p}, p = If[i < 1, 1, Prime[i]]; If[n == 0 || i < 1, 1, Max[b[n, i - 1], Table[p^j*b[n - p^j, i - 1], {j, 1, Log[p, n] // Floor}]]]];
%t A129759 g[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]];
%t A129759 a[n_] := FactorInteger[g[n]][[-1, 1]];
%t A129759 Array[a, 100] (* _Jean-François Alcover_, Feb 19 2020, after _Alois P. Heinz_ in A000793 *)
%Y A129759 Cf. A006530, A000793, A128305.
%K A129759 nonn,look
%O A129759 1,2
%A A129759 _Anthony C Robin_, May 15 2007
%E A129759 More terms from _Klaus Brockhaus_ and _R. J. Mathar_, May 16 2007
%E A129759 Corrected a(66) by _Alois P. Heinz_, Feb 16 2013