This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129761 #57 Nov 04 2023 21:52:39 %S A129761 1,1,2,1,3,1,1,6,1,1,2,1,11,1,1,2,1,3,1,1,22,1,1,2,1,3,1,1,6,1,1,2,1, %T A129761 43,1,1,2,1,3,1,1,6,1,1,2,1,11,1,1,2,1,3,1,1,86,1,1,2,1,3,1,1,6,1,1,2, %U A129761 1,11,1,1,2,1,3,1,1,22,1,1,2,1,3,1,1,6,1,1,2,1,171,1,1,2,1,3,1,1,6 %N A129761 First differences of Fibbinary numbers (A003714). %C A129761 Theorem: If the Zeckendorf representation of M ends with exactly k >= 0 zeros, ...10^k, then a(n) = ceiling(2^k/3). Also, if the Zeckendorf representation of n (A014417(n)) is even then a(n) is given by A319952, otherwise a(n) = 1. - _Jeffrey Shallit_ and _N. J. A. Sloane_, Oct 03 2018 %H A129761 N. J. A. Sloane, <a href="/A129761/b129761.txt">Table of n, a(n) for n = 0..10000</a> (First 2500 terms from Vincenzo Librandi) %F A129761 a(n) = A005578(A035614(n)). - _Alan Michael Gómez Calderón_, Nov 01 2023 %p A129761 with(combinat): F:=fibonacci: %p A129761 A072649:= proc(n) local j; global F; for j from ilog[(1+sqrt(5))/2](n) %p A129761 while F(j+1)<=n do od; (j-1); end: %p A129761 A003714 := proc(n) global F; option remember; if(n < 3) then RETURN(n); else RETURN((2^(A072649(n)-1))+A003714(n-F(1+A072649(n)))); fi; end: %p A129761 A129761 := n -> A003714(n+1)-A003714(n): %p A129761 [seq(A129761(n),n=0..120)]; # _N. J. A. Sloane_, Oct 03 2018, borrowing programs from other sequences %t A129761 Differences[Select[Range[600], !MemberQ[Partition[IntegerDigits[#, 2], 2, 1], {1, 1}] &]] (* _Harvey P. Dale_, Jul 17 2011 *) %Y A129761 Cf. A000045, A000071, A003714, A005578, A035614, A319432. %K A129761 nonn %O A129761 0,3 %A A129761 _Ralf Stephan_, May 14 2007 %E A129761 a(0)=1 added by _N. J. A. Sloane_, Oct 02 2018