This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129803 #36 Oct 31 2024 13:17:23 %S A129803 10,136,1891,26335,366796,5108806,71156485,991081981,13803991246, %T A129803 192264795460,2677903145191,37298379237211,519499406175760, %U A129803 7235693307223426,100780206894952201,1403687203222107385,19550840638214551186,272308081731781609216 %N A129803 Triangular numbers that are the sum of three consecutive triangular numbers. %C A129803 Indices m: 4, 16, 61, 229, 856, 3196, 11929, with recurrence m(i) = 5(m(i-1) - m(i-2)) + m(i-3) (see A133161). %C A129803 If first term is omitted, same sequence as A128862. - _R. J. Mathar_, Jun 13 2008 %H A129803 Colin Barker, <a href="/A129803/b129803.txt">Table of n, a(n) for n = 1..850</a> %H A129803 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15, -15, 1). %F A129803 a(n) = tr(m) = tr(k) + tr(k+1) + tr(k+2), where tr(k) = k(k+1)/2 = A000217(k). %F A129803 From _Richard Choulet_, Oct 06 2007: (Start) %F A129803 a(n+2) = 14*a(n+1) - a(n) - 3. %F A129803 a(n+1) = 7*a(n) - 3/2 + 1/2*sqrt(192*a(n)^2 - 96*a(n) - 15). %F A129803 G.f.: x*(10-14*x+x^2) / ((1-x)*(1-14*x+x^2)). (End) %F A129803 a(n) = (4-3*(7-4*sqrt(3))^n*(-2+sqrt(3))+3*(2+sqrt(3))*(7+4*sqrt(3))^n)/16. - _Colin Barker_, Mar 05 2016 %e A129803 With tr(k) = k(k+1)/2 = A000217(k): %e A129803 10 = tr(4) = tr(1) + tr(2) + tr(3) = 1 + 3 + 6, %e A129803 136 = tr(16) = tr(8) + tr(9) + tr(10) = 36 + 45 + 55, %e A129803 1891 = tr(61) = tr(34) + tr(35) + tr(36) = 595 + 630 + 666, %e A129803 26335 = tr(229) = tr(131) + tr(132) + tr(133) = 8646 + 8778 + 8911, %e A129803 366796 = tr(856) = tr(493) + tr(494) + tr(495) = 121771 + 122265 + 122760. %t A129803 LinearRecurrence[{15,-15,1},{10,136,1891},20] (* _Harvey P. Dale_, Oct 31 2024 *) %o A129803 (PARI) Vec((10*z - 14*z^2 + z^3)/((1-z)*(1 - 14*z + z^2)) + O(z^30)) \\ _Michel Marcus_, Sep 16 2015 %Y A129803 Cf. A000217, A128862, A133161. %K A129803 nonn,easy %O A129803 1,1 %A A129803 _Zak Seidov_, May 18 2007