cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129803 Triangular numbers that are the sum of three consecutive triangular numbers.

This page as a plain text file.
%I A129803 #36 Oct 31 2024 13:17:23
%S A129803 10,136,1891,26335,366796,5108806,71156485,991081981,13803991246,
%T A129803 192264795460,2677903145191,37298379237211,519499406175760,
%U A129803 7235693307223426,100780206894952201,1403687203222107385,19550840638214551186,272308081731781609216
%N A129803 Triangular numbers that are the sum of three consecutive triangular numbers.
%C A129803 Indices m: 4, 16, 61, 229, 856, 3196, 11929, with recurrence m(i) = 5(m(i-1) - m(i-2)) + m(i-3) (see A133161).
%C A129803 If first term is omitted, same sequence as A128862. - _R. J. Mathar_, Jun 13 2008
%H A129803 Colin Barker, <a href="/A129803/b129803.txt">Table of n, a(n) for n = 1..850</a>
%H A129803 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15, -15, 1).
%F A129803 a(n) = tr(m) = tr(k) + tr(k+1) + tr(k+2), where tr(k) = k(k+1)/2 = A000217(k).
%F A129803 From _Richard Choulet_, Oct 06 2007: (Start)
%F A129803 a(n+2) = 14*a(n+1) - a(n) - 3.
%F A129803 a(n+1) = 7*a(n) - 3/2 + 1/2*sqrt(192*a(n)^2 - 96*a(n) - 15).
%F A129803 G.f.: x*(10-14*x+x^2) / ((1-x)*(1-14*x+x^2)). (End)
%F A129803 a(n) = (4-3*(7-4*sqrt(3))^n*(-2+sqrt(3))+3*(2+sqrt(3))*(7+4*sqrt(3))^n)/16. - _Colin Barker_, Mar 05 2016
%e A129803 With tr(k) = k(k+1)/2 = A000217(k):
%e A129803 10 = tr(4) = tr(1) + tr(2) + tr(3) = 1 + 3 + 6,
%e A129803 136 = tr(16) = tr(8) + tr(9) + tr(10) = 36 + 45 + 55,
%e A129803 1891 = tr(61) = tr(34) + tr(35) + tr(36) = 595 + 630 + 666,
%e A129803 26335 = tr(229) = tr(131) + tr(132) + tr(133) = 8646 + 8778 + 8911,
%e A129803 366796 = tr(856) = tr(493) + tr(494) + tr(495) = 121771 + 122265 + 122760.
%t A129803 LinearRecurrence[{15,-15,1},{10,136,1891},20] (* _Harvey P. Dale_, Oct 31 2024 *)
%o A129803 (PARI) Vec((10*z - 14*z^2 + z^3)/((1-z)*(1 - 14*z + z^2)) + O(z^30)) \\ _Michel Marcus_, Sep 16 2015
%Y A129803 Cf. A000217, A128862, A133161.
%K A129803 nonn,easy
%O A129803 1,1
%A A129803 _Zak Seidov_, May 18 2007