This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129862 #30 Sep 20 2024 23:54:08 %S A129862 1,2,-1,4,-4,1,4,-10,6,-1,4,-20,21,-8,1,4,-34,56,-36,10,-1,4,-52,125, %T A129862 -120,55,-12,1,4,-74,246,-329,220,-78,14,-1,4,-100,441,-784,714,-364, %U A129862 105,-16,1,4,-130,736,-1680,1992,-1364,560,-136,18,-1,4,-164,1161,-3312,4950,-4356,2379,-816,171,-20,1 %N A129862 Triangle read by rows: T(n,k) is the coefficient [x^k] of (-1)^n times the characteristic polynomial of the Cartan matrix for the root system D_n. %C A129862 Row sums of the absolute values are s(n) = 1, 3, 9, 21, 54, 141, 369, 966, 2529, 6621, 17334, ... (i.e., s(n) = 3*|A219233(n-1)| for n > 0). - _R. J. Mathar_, May 31 2014 %D A129862 R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 60. %D A129862 Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S. :ISBN 0-8218-2848-7, 1978, p. 464. %H A129862 G. C. Greubel, <a href="/A129862/b129862.txt">Rows n = 0..100 of the triangle, flattened</a> %F A129862 T(n, k) = coefficients of ( (2-x)*Lucas(2*n-2, i*sqrt(x)) ) with T(0, 0) = 1, T(1, 0) = 2 and T(1, 1) = -1. - _G. C. Greubel_, Jun 21 2021 %e A129862 Triangle begins: %e A129862 1; %e A129862 2, -1; %e A129862 4, -4, 1; %e A129862 4, -10, 6, -1; %e A129862 4, -20, 21, -8, 1; %e A129862 4, -34, 56, -36, 10, -1; %e A129862 4, -52, 125, -120, 55, -12, 1; %e A129862 4, -74, 246, -329, 220, -78, 14, -1; %e A129862 4, -100, 441, -784, 714, -364, 105, -16, 1; %e A129862 4, -130, 736, -1680, 1992, -1364, 560, -136, 18, -1; %e A129862 4, -164, 1161, -3312, 4950, -4356, 2379, -816, 171, -20, 1; %p A129862 A129862 := proc(n,k) %p A129862 M := Matrix(n,n); %p A129862 for r from 1 to n do %p A129862 for c from 1 to n do %p A129862 if r = c then %p A129862 M[r,c] := 2; %p A129862 elif abs(r-c)= 1 then %p A129862 M[r,c] := -1; %p A129862 else %p A129862 M[r,c] := 0 ; %p A129862 end if; %p A129862 end do: %p A129862 end do: %p A129862 if n-2 >= 1 then %p A129862 M[n,n-2] := -1 ; %p A129862 M[n-2,n] := -1 ; %p A129862 end if; %p A129862 if n-1 >= 1 then %p A129862 M[n-1,n] := 0 ; %p A129862 M[n,n-1] := 0 ; %p A129862 end if; %p A129862 LinearAlgebra[CharacteristicPolynomial](M,x) ; %p A129862 (-1)^n*coeftayl(%,x=0,k) ; %p A129862 end proc: # _R. J. Mathar_, May 31 2014 %t A129862 (* First program *) %t A129862 t[n_, m_, d_]:= If[n==m, 2, If[(m==d && n==d-2) || (n==d && m==d-2), -1, If[(n==m- 1 || n==m+1) && n<=d-1 && m<=d-1, -1, 0]]]; %t A129862 M[d_]:= Table[t[n,m,d], {n,1,d}, {m,1,d}]; %t A129862 p[n_, x_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]]; %t A129862 T[n_, k_]:= SeriesCoefficient[p[n, x], {x, 0, k}]; %t A129862 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jun 21 2021 *) %t A129862 (* Second program *) %t A129862 Join[{{1}, {2, -1}}, CoefficientList[Table[(2-x)*LucasL[2(n-1), Sqrt[-x]], {n, 2, 10}], x]]//Flatten (* _Eric W. Weisstein_, Apr 04 2018 *) %o A129862 (Sage) %o A129862 def p(n,x): return 2*(2-x)*sum( ((n-1)/(2*n-k-2))*binomial(2*n-k-2, k)*(-x)^(n-k-1) for k in (0..n-1) ) %o A129862 def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False) %o A129862 [1,2,-1]+flatten([T(n) for n in (2..12)]) # _G. C. Greubel_, Jun 21 2021 %Y A129862 Cf. A156608, A156609, A156610, A156612, A219233. %K A129862 tabl,sign %O A129862 0,2 %A A129862 _Roger L. Bagula_, May 23 2007