This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129871 #55 Apr 08 2025 23:29:33 %S A129871 1,2,3,7,43,1807,3263443,10650056950807,113423713055421844361000443, %T A129871 12864938683278671740537145998360961546653259485195807 %N A129871 A variant of Sylvester's sequence: a(0)=1 and for n>0, a(n) = (a(0)*a(1)*...*a(n-1)) + 1. %C A129871 A variant of A000058, starting with an extra 1. %D A129871 Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, 1997, Exercice 3.3.4 page 284. %H A129871 Mohammad K. Azarian, <a href="http://www.jstor.org/stable/10.4169/college.math.j.42.4.329">Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958</a>, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. %H A129871 Mohammad K. Azarian, <a href="http://www.jstor.org/stable/10.4169/college.math.j.43.4.337">Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution</a> College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342. %H A129871 Junnosuke Koizumi, <a href="https://arxiv.org/abs/2504.05933">Irrationality of the reciprocal sum of doubly exponential sequences</a>, arXiv:2504.05933 [math.NT], 2025. %H A129871 Vjekoslav Kovač, <a href="https://arxiv.org/abs/2406.17593">On simultaneous rationality of two Ahmes series</a>, arXiv:2406.17593 [math.NT], 2024. %F A129871 For n>0, a(n) = A000058(n-1). %F A129871 a(1) = 2, a(n+1) = a(n)^2 - a(n) + 1. a(n) = round(c^(2^n)), where c = 1.264... is the Vardi constant, A076393. - _Thomas Ordowski_, Jun 11 2013 %F A129871 From _Bernard Schott_, Apr 06 2021: (Start) %F A129871 Sum_{n>=0} 1/a(n) = 2. %F A129871 Sum_{n>=0} (-1)^(n+1)/a(n) = 2 * (A118227 - 1). (End) %t A129871 a[0] = 1; a[n_] := a[n] = Product[a[k], {k, 0, n - 1}] + 1 %o A129871 (Haskell) %o A129871 a129871 n = a129871_list !! n %o A129871 a129871_list = 1 : a000058_list -- _Reinhard Zumkeller_, Dec 18 2013 %Y A129871 Cf. A000058 which is the main entry for this sequence. %Y A129871 Cf. A118227. %K A129871 nonn %O A129871 0,2 %A A129871 _Ben Branman_, Sep 16 2011 %E A129871 Corrected and rewritten by _Ben Branman_, Sep 16 2011 %E A129871 Edited by _Max Alekseyev_, Oct 11 2012