cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129905 Expansion of g.f.: (1-x)*(1+2*x)/((1+x)*(1-3*x+x^2)).

This page as a plain text file.
%I A129905 #35 Mar 09 2024 16:26:51
%S A129905 1,3,6,17,43,114,297,779,2038,5337,13971,36578,95761,250707,656358,
%T A129905 1718369,4498747,11777874,30834873,80726747,211345366,553309353,
%U A129905 1448582691,3792438722,9928733473,25993761699,68052551622,178163893169
%N A129905 Expansion of g.f.: (1-x)*(1+2*x)/((1+x)*(1-3*x+x^2)).
%C A129905 Floretion Algebra Multiplication Program, FAMP Code: tesseq[A*B] with A = + .5'i + .5'j + .5'k + 'ji' + .5e ; B = + .5i' + .5j' + .5k' + 'ij' + .5e (apart from initial term)
%C A129905 From _Andrew Rupinski_, Jan 31 2011: (Start)
%C A129905 Form the infinite recursive array R(i,j) as follows: R(1,j) = F(j), R(2,j) = L(j) and for i > 2, R(i,j) = R(i-1,j) + R(i-2,j) where F(j) is the j-th Fibonacci number and L(j) is the j-th Lucas number. Then for i > 0, R(i,i) = a(i-1):
%C A129905    1   1   2   3    5    8   13  ...
%C A129905    1   3   4   7   11   18   29  ...
%C A129905    2   4   6  10   16   26   42  ...
%C A129905    3   7  10  17   27   44   71  ...
%C A129905    5  11  16  27   43   70  113  ...
%C A129905    8  18  26  44   70  114  184  ...
%C A129905   13  29  42  71  113  184  297  ...
%C A129905   ...
%C A129905 (End)
%H A129905 G. C. Greubel, <a href="/A129905/b129905.txt">Table of n, a(n) for n = 0..1000</a>
%H A129905 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-1).
%F A129905 a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
%F A129905 a(n+2) - a(n) = A054486(n+1).
%F A129905 a(n) = ( (4-sqrt(5))*((1+sqrt(5))/2)^(2*n) + (4 + sqrt(5))*((1-sqrt(5))/2 )^(2*n) + 2*(-1)^n)/5.
%F A129905 a(n) = -2*(-1)^n/5-8*A001906(n)/5+7*A001906(n+1)/5. - _R. J. Mathar_, Nov 10 2009
%F A129905 a(n) = (Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2. - _Gary Detlefs_ Dec 20 2010
%t A129905 CoefficientList[ Series[(1+x-2x^2)/(1-2x-2x^2+x^3), {x, 0, 27}], x] (* Or *)
%t A129905 t[1, k_] := Fibonacci@ k; t[2, k_] := LucasL@ k; t[n_, k_] := t[n, k] = t[n - 1, k] + t[n - 2, k]; Table[ t[n, n], {n, 28}] (* _Robert G. Wilson v_ *)
%o A129905 (PARI) vector(30, n, n--; (fibonacci(n-2)^2 + fibonacci(n+2)^2 + fibonacci(2*n))/2) \\ _G. C. Greubel_, Jan 07 2019
%o A129905 (Magma) [(Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2: n in [0..30]]; // _G. C. Greubel_, Jan 07 2019
%o A129905 (SageMath) [(fibonacci(n-2)^2 + fibonacci(n+2)^2 + fibonacci(2*n))/2 for n in (0..30)] # _G. C. Greubel_, Jan 07 2019
%o A129905 (GAP) List([0..30], n -> (Fibonacci(n-2)^2 + Fibonacci(n+2)^2 + Fibonacci(2*n))/2); # _G. C. Greubel_, Jan 07 2019
%Y A129905 Cf. A001906, A054486.
%K A129905 easy,nonn
%O A129905 0,2
%A A129905 _Creighton Dement_, Jun 04 2007