cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129912 Numbers that are products of distinct primorial numbers (see A002110).

This page as a plain text file.
%I A129912 #57 Oct 30 2023 07:39:47
%S A129912 1,2,6,12,30,60,180,210,360,420,1260,2310,2520,4620,6300,12600,13860,
%T A129912 27720,30030,37800,60060,69300,75600,138600,180180,360360,415800,
%U A129912 485100,510510,831600,900900,970200,1021020,1801800,2910600,3063060,5405400
%N A129912 Numbers that are products of distinct primorial numbers (see A002110).
%C A129912 Conjecture: every odd prime p is either adjacent to a term of A129912 or a prime distance q from some term of A129912, where q < p. - _Bill McEachen_, Jun 03 2010, edited for clarity in Feb 26 2019
%C A129912 The first 2^20 terms k > 2 of A283477 all satisfy also the condition that the differences k-A151799(k) and A151800(k)-k are always either 1 or prime, like is also conjectured to hold for A002182 (cf. also the conjecture given in A117825). However, for A025487, which is a supersequence of both sequences, this is not always true: 512 is a member of A025487, but A151800(512) = 521, with 521 - 512 = 9, which is a composite number. - _Antti Karttunen_, Feb 26 2019
%D A129912 CRC Standard Mathematical Tables, 28th Ed., CRC Press
%H A129912 Giovanni Resta, <a href="/A129912/b129912.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H A129912 Bill McEachen, <a href="http://commons.wikimedia.org/wiki/File:OEIS_A129912_spin1.svg">Normalized A129912</a>.
%H A129912 Robert Potter, <a href="http://primorialconjecture.wordpress.com/2012/07/">Primorial Conjecture</a>.
%H A129912 John Sokol, <a href="http://www.dnull.com/~sokol/prime/conjecture1.html">Sokol's Prime Conjecture</a>, 2002.
%H A129912 Wikipedia, <a href="http://en.wikipedia.org/wiki/Primorial">Primorial</a>.
%H A129912 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>.
%F A129912 Apart from 1 and 2, numbers of the form 2^k(1)*3^k(2)*5^k(3)*...*p(s)^k(s), where p(s) is s-th prime, k(i)>0 for i=1..s, k(i)-k(i-1) = 0 or 1 for i=2..s and |{k(1),k(2),..,k(s)}|=k(1). - _Vladeta Jovovic_, Jun 14 2007
%F A129912 Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/A002110(n)) = 1.8177952875... . - _Amiram Eldar_, Jun 03 2023
%e A129912 For s = 4 there are 8 (generally 2^(s-1)) such numbers: 210 = 2*3*5*7, 420 = 2^2*3*5*7 = (2*3*5*7)*2, 1260 = 2^2*3^2*5*7 = (2*3*5*7)*(2*3), 6300 = 2^2*3^2*5^2*7 = (2*3*5*7)*(2*3*5), 2520 = 2^3*3^2*5*7 = (2*3*5*7)*(2*3)*2, 12600 = 2^3*3^2*5^2*7 = (2*3*5*7)*(2*3*5)*2, 37800 = 2^3*3^3*5^2*7 = (2*3*5*7)*(2*3*5)*(2*3), 75600 = 2^4*3^3*5^2*7 = (2*3*5*7)*(2*3*5)*(2*3)*2.
%t A129912 Clear[f]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m-1], m++]; f[m] (* _Jean-François Alcover_, Mar 03 2014 *) (* or *)
%t A129912 pr[n_] := Product[Prime[n + 1 - i]^i, {i, n}]; upto[mx_] := Block[{ric, j = 1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1, Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip + 1, ex - 1]]]]; Sort@ Reap[ Sow[1]; While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]];
%t A129912 upto[10^30] (* faster, _Giovanni Resta_, Apr 02 2017 *)
%o A129912 (PARI) is(n)=my(o=valuation(n,2),t); if(o<1||n<2, return(n==1)); n>>=o; forprime(p=3,, t=valuation(n,p); n/=p^t; if(t>o || t<o-1, return(0)); if(t==0, return(n==1)); o=t) \\ _Charles R Greathouse IV_, Oct 22 2015
%Y A129912 Subsequence of A025487. Sequence A283477 sorted into ascending order.
%Y A129912 Cf. A002110, A117825, A151799, A151800.
%K A129912 easy,nonn
%O A129912 1,2
%A A129912 _Bill McEachen_, Jun 05 2007, Jun 06 2007, Jul 06 2007, Aug 07 2007
%E A129912 Edited by _N. J. A. Sloane_, Jun 09 2007, Aug 08 2007
%E A129912 I corrected the Potter link to reflect its relocation. - _Bill McEachen_, Sep 12 2009
%E A129912 I added link to Wikicommons image. - _Bill McEachen_, Sep 16 2009
%E A129912 I again corrected the Potter link for its relocation - _Bill McEachen_, May 30 2013