This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129915 #11 Sep 29 2024 13:18:21 %S A129915 1,1,1,2,3,6,3,6,12,24,15,30,60,120,45,90,180,360,720,315,630,1260, %T A129915 2520,5040,315,630,1260,2520,5040,10080,20160,40320,2835,5670,11340, %U A129915 22680,45360,90720,181440,362880,14175,28350,56700,113400,226800,453600 %N A129915 Irregular triangle read by rows: T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0. %H A129915 G. C. Greubel, <a href="/A129915/b129915.txt">Rows n = 0..50 of the irregular triangle, flattened</a> %F A129915 T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0, for n >= 1, 1 <= k <= A113474(n-1). %e A129915 Irregular triangle begins as: %e A129915 1; %e A129915 1; %e A129915 1, 2; %e A129915 3, 6; %e A129915 3, 6, 12, 24; %e A129915 15, 30, 60, 120; %e A129915 45, 90, 180, 360, 720; %e A129915 315, 630, 1260, 2520, 5040; %e A129915 315, 630, 1260, 2520, 5040, 10080, 20160, 40320; %t A129915 A113474[n_]:= n+1 - DigitCount[n, 2, 1]; %t A129915 f[n_, k_]:= If[IntegerQ[(n-1)!/2^k], (n-1)!/2^k, 0]; %t A129915 A129915[n_, k_]:= f[n, A113474[n-1]-k]; %t A129915 Table[A129915[n,k], {n,15}, {k,A113474[n-1]}]//Flatten (* modified by _G. C. Greubel_, Sep 28 2024 *) %o A129915 (Magma) %o A129915 A113474:= func< n | n+1 - Multiplicity(Intseq(n, 2), 1) >; %o A129915 f:= func< n,k | IsIntegral(Factorial(n-1)/2^k) select Factorial(n-1)/2^k else 0 >; %o A129915 A129915:= func< n,k | f(n, A113474(n-1) - k) >; %o A129915 [A129915(n,k): k in [1..A113474(n-1)], n in [1..12]]; // _G. C. Greubel_, Sep 28 2024 %o A129915 (SageMath) %o A129915 def A113474(n): return n+1 - sum((n+0).digits(2)) %o A129915 def f(n,k): return factorial(n-1)/2^k if (factorial(n-1)/2^k).is_integer() else 0 %o A129915 def A129915(n,k): return f(n, A113474(n-1) - k) %o A129915 flatten([[A129915(n,k) for k in range(1, A113474(n-1)+1)] for n in range(1,16)]) # _G. C. Greubel_, Sep 28 2024 %Y A129915 Cf. A049606, A067655, A113474. %K A129915 nonn,tabf %O A129915 1,4 %A A129915 _Roger L. Bagula_, Jun 05 2007 %E A129915 Edited by _G. C. Greubel_, Sep 28 2024