This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129925 #3 Jan 19 2019 04:15:43 %S A129925 1,3,2,12,8,60,40,24,360,240,144,2520,1680,1008,720,20160,13440,8064, %T A129925 5760,181440,120960,72576,51840,1814400,1209600,725760,518400, %U A129925 19958400,13305600,7983360,5702400,3628800,239500800,159667200,95800320,68428800 %N A129925 Triangular sequence based on A002301 and the alternating groups a prime -adic: t(n,m)=n!/Prime[m] for n>=Prime[m]. %C A129925 Alternating groups are: An->n!/2 for n>=2 If the tritonic or triple symmetric groups are: Tn->n!/3 for n>=4 Then the pentatonic would be: Pn->n!/5 for n>=5 General: ( triangular sequence) G(m)n=n!/Prime[m] for n>=Prime[m] %F A129925 t(n,m)=n!/Prime[m] for n>=Prime[m] %e A129925 {1}, %e A129925 {3, 2}, %e A129925 {12, 8}, %e A129925 {60, 40, 24}, %e A129925 {360, 240, 144}, %e A129925 {2520, 1680, 1008, 720}, %e A129925 {20160, 13440, 8064, 5760}, %e A129925 {181440, 120960, 72576, 51840}, %e A129925 {1814400, 1209600, 725760, 518400}, %t A129925 g[n_, m_] = If[n >= Prime[m], n!/Prime[m], {}]; a = Table[Flatten[Table[g[n, m], {m, 1, n}]], {n, 1, 23}]; Flatten[a] %Y A129925 Cf. A002301. %K A129925 nonn,tabl,uned %O A129925 1,2 %A A129925 _Roger L. Bagula_, Jun 06 2007