This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129952 #44 Oct 03 2024 15:13:58 %S A129952 1,1,2,6,16,40,96,224,512,1152,2560,5632,12288,26624,57344,122880, %T A129952 262144,557056,1179648,2490368,5242880,11010048,23068672,48234496, %U A129952 100663296,209715200,436207616,905969664,1879048192,3892314112 %N A129952 Binomial transform of A124625. %C A129952 Essentially the same as A057711: a(n) = A057711(n) for n >= 1. %C A129952 Number of permutations of length n>=0 avoiding the partially ordered pattern (POP) {1>2, 1>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and third elements. - _Sergey Kitaev_, Dec 08 2020 %H A129952 Vincenzo Librandi, <a href="/A129952/b129952.txt">Table of n, a(n) for n = 0..1000</a> %H A129952 Alice L. L. Gao and Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019. %H A129952 Alice L. L. Gao and Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26. %H A129952 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4). %F A129952 a(0) = 1, a(1) = 1; for n > 1, a(n) = n*2^(n-2). %F A129952 G.f.: (1-3*x+2*x^2+2*x^3)/(1-2*x)^2. %F A129952 E.g.f.: (1/2)*(x*exp(2*x) + x + 2). - _G. C. Greubel_, Jun 08 2016 %t A129952 LinearRecurrence[{4, -4}, {1, 1, 2, 6}, 30] (* _G. C. Greubel_, Jun 08 2016; corrected by _Georg Fischer_, Apr 02 2019 *) %o A129952 (Magma) m:=15; S:=&cat[ [ 1, 2*i ]: i in [0..m] ]; [ &+[ Binomial(j-1, k-1)*S[k]: k in [1..j] ]: j in [1..2*m] ]; // _Klaus Brockhaus_, Jun 17 2007 %o A129952 (PARI) {m=29; print1(1, ",", 1, ","); for(n=2, m, print1(n*2^(n-2), ","))} \\ _Klaus Brockhaus_, Jun 17 2007 %o A129952 (Python) %o A129952 def A129952(n): return n<<n-2 if n>1 else 1 # _Chai Wah Wu_, Oct 03 2024 %Y A129952 Cf. A124625, A045623, A057711, A129953 (first differences), A129954 (second differences), A129955 (third differences). %K A129952 nonn,easy %O A129952 0,3 %A A129952 _Paul Curtz_, Jun 10 2007 %E A129952 Edited and extended by _Klaus Brockhaus_, Jun 17 2007