This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A129965 #11 Dec 05 2023 20:45:10 %S A129965 0,1,91,4095,5886,7875,8128,8911,9045,17955,21736,23653,47278,93961, %T A129965 115921,130816,184528,259560,379756,488566,575128,658378,758296, %U A129965 810901,873181,885115,1060696,1155960,1358776,1385280,1997001,2616328,2685403 %N A129965 Triangular numbers that are the difference of nonnegative cubes. %H A129965 Robert Israel, <a href="/A129965/b129965.txt">Table of n, a(n) for n = 1..439</a> (terms <= 10^12) %e A129965 A000217(13) = Sum_{k=1..13} k = 91 = 216 - 125 = 6^3 - 5^3, so 91 is in the sequence. - _Peter Munn_, Dec 05 2022 %p A129965 M:= 10^7: # for terms <= M %p A129965 S:= {0}: %p A129965 for x from 1 while 3*x^2 - 3*x + 1 < M do %p A129965 if x^3 < M then Y:= 0 else Y:= ceil(x^3-M) fi; %p A129965 S:= S union select(t -> issqr(1+8*t),{seq(x^3 - y^3, y = Y .. x-1)}); %p A129965 od: %p A129965 sort(convert(S,list)); # _Robert Israel_, Dec 05 2023 %t A129965 With[{n = 5000}, Intersection[(#1*((#1 + 1)/2) & ) /@ Range[0, n], Flatten[Outer[ #1^3 - #2^3 &, Range[n], Range[0, n - 1]]]]] %Y A129965 Intersection of A000217 and A152043. %Y A129965 Cf. A038596, A129966, A185253. %K A129965 nonn %O A129965 1,3 %A A129965 Peter Pein (petsie(AT)dordos.net), Jun 13 2007, Jun 14 2007