This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130020 #26 Oct 01 2022 23:23:08 %S A130020 1,1,0,1,1,0,1,2,2,0,1,3,5,5,0,1,4,9,14,14,0,1,5,14,28,42,42,0,1,6,20, %T A130020 48,90,132,132,0,1,7,27,75,165,297,429,429,0,1,8,35,110,275,572,1001, %U A130020 1430,1430,0,1,9,44,154,429,1001,2002,3432,4862,4862,0 %N A130020 Triangle T(n,k), 0<=k<=n, read by rows given by [1,0,0,0,0,0,0,...] DELTA [0,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938 . %C A130020 Reflected version of A106566. %H A130020 G. C. Greubel, <a href="/A130020/b130020.txt">Rows n = 0..50 of the triangle, flattened</a> %H A130020 Francesca Aicardi, <a href="https://arxiv.org/abs/2011.14628">Catalan triangle and tied arc diagrams</a>, arXiv:2011.14628 [math.CO], 2020. %F A130020 T(n, k) = A106566(n, n-k). %F A130020 Sum_{k=0..n} T(n,k) = A000108(n). %F A130020 T(n, k) = (n-k)*binomial(n+k-1, k)/n with T(0, 0) = 1. - _Jean-François Alcover_, Jun 14 2019 %F A130020 Sum_{k=0..floor(n/2)} T(n-k, k) = A210736(n). - _G. C. Greubel_, Jun 14 2022 %F A130020 G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - z*c(x*z)) where c(z) = g.f. of A000108. %e A130020 Triangle begins: %e A130020 1; %e A130020 1, 0; %e A130020 1, 1, 0; %e A130020 1, 2, 2, 0; %e A130020 1, 3, 5, 5, 0; %e A130020 1, 4, 9, 14, 14, 0; %e A130020 1, 5, 14, 28, 42, 42, 0; %e A130020 1, 6, 20, 48, 90, 132, 132, 0; %e A130020 1, 7, 27, 75, 165, 297, 429, 429, 0; %e A130020 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 0; %e A130020 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 0; %e A130020 ... %t A130020 T[n_, k_]:= (n-k)Binomial[n+k-1, k]/n; T[0, 0] = 1; %t A130020 Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _Jean-François Alcover_, Jun 14 2019 *) %o A130020 (Sage) %o A130020 @CachedFunction %o A130020 def A130020(n, k): %o A130020 if n==k: return add((-1)^j*binomial(n, j) for j in (0..n)) %o A130020 return add(A130020(n-1, j) for j in (0..k)) %o A130020 for n in (0..10) : %o A130020 [A130020(n, k) for k in (0..n)] # _Peter Luschny_, Nov 14 2012 %o A130020 (Magma) %o A130020 A130020:= func< n,k | n eq 0 select 1 else (n-k)*Binomial(n+k-1, k)/n >; %o A130020 [A130020(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jun 14 2022 %o A130020 (PARI) {T(n, k) = if( k<0 || k>=n, n==0 && k==0, binomial(n+k, n) * (n-k)/(n+k))}; /* _Michael Somos_, Oct 01 2022 */ %Y A130020 The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A047072, A059365, A099039, A106566, this sequence. %Y A130020 Diagonals give A000108, A000245, A002057, A000344, A003517, A000588, A003518, A003519, A001392, ... %Y A130020 Cf. A000108 (Catalan numbers), A106566 (row reversal), A210736. %K A130020 nonn,tabl %O A130020 0,8 %A A130020 _Philippe Deléham_, Jun 16 2007