cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130033 Fourth (m=3) column sequence of triangle A129467.

This page as a plain text file.
%I A130033 #21 Feb 10 2024 04:02:13
%S A130033 1,-20,508,-17544,808848,-48405888,3663035136,-342678781440,
%T A130033 38879803008000,-5263815891456000,838682139211776000,
%U A130033 -155393459730173952000,33136711787903754240000,-8059211591488628981760000,2217755736675770074398720000
%N A130033 Fourth (m=3) column sequence of triangle A129467.
%C A130033 See the M. Bruschi et al. reference given in A129467.
%H A130033 G. C. Greubel, <a href="/A130033/b130033.txt">Table of n, a(n) for n = 0..250</a>
%F A130033 a(n) = A129467(n+3,3),n>=0.
%F A130033 a(n) = (-1)^n*det(PS(i+3,j+2), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind (A071951). - _Mircea Merca_, Apr 06 2013
%F A130033 a(n) = (-1)^n * ((n+2)!)^2 * (2*(n+2) - (n+3)*h(n+2, 2)), where h(n,k) = Sum_{j=1..n} 1/j^k is the generalized harmonic number. - _G. C. Greubel_, Feb 10 2024
%e A130033 a(3)=-det([20,1,0],[292,40,1],[3824,1092,70])=-17544. [_Mircea Merca_, Apr 06 2013]
%t A130033 A130033[n_]:= (-1)^n*((n+2)!)^2*(2*(n+2) -(n+3)*HarmonicNumber[n+2,2]);
%t A130033 Table[A130033[n], {n,0,30}] (* _G. C. Greubel_, Feb 10 2024 *)
%o A130033 (Magma)
%o A130033 h:= func< n,k | (&+[1/j^k : j in [1..n]]) >;
%o A130033 A130033:= func< n | (-1)^n*(Factorial(n+2))^2*(2*(n+2) - (n+3)*h(n+2,2)) >;
%o A130033 [A130033(n): n in [0..30]]; // _G. C. Greubel_, Feb 10 2024
%o A130033 (SageMath)
%o A130033 def A130033(n): return (-1)^n*(factorial(n+2))^2*(2*(n+2) - (n+3)*(zeta(2) - psi(1,n+3)))
%o A130033 [A130033(n) for n in range(31)] # _G. C. Greubel_, Feb 10 2024
%Y A130033 Cf. A010790 (m=1 column unsigned), A084915 (m=2 column unsigned).
%Y A130033 Cf. A129467.
%K A130033 sign,easy
%O A130033 0,2
%A A130033 _Wolfdieter Lang_, May 04 2007