This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A130047 #28 Aug 15 2017 11:09:26 %S A130047 1,1,1,0,1,1,1,0,0,1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,1,1,0,0,0,1,0,1,0, %T A130047 0,0,1,1,1,1,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,1,1,1,1, %U A130047 1,1,1,1,1,0,0,0,0,0,0 %N A130047 Left half of Pascal's triangle (A034868) modulo 2. %C A130047 Row sums yield: 1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 2, 2, 4, 2, 4, 4, 8, ...(see A048896). %H A130047 G. C. Greubel, <a href="/A130047/b130047.txt">Table of n, a(n) for the first 100 rows, flattened</a> %F A130047 T(n,k) = mod(binomial(n, k), 2), 0 <= k <= floor(n/2). - _G. C. Greubel_, Aug 12 2017 %e A130047 Triangle begins: %e A130047 1, %e A130047 1, %e A130047 1, 0, %e A130047 1, 1, %e A130047 1, 0, 0, %e A130047 1, 1, 0, %e A130047 1, 0, 1, 0, %e A130047 1, 1, 1, 1, %e A130047 1, 0, 0, 0, 0, %e A130047 1, 1, 0, 0, 0, %e A130047 1, 0, 1, 0, 0, 0, %e A130047 1, 1, 1, 1, 0, 0, %e A130047 1, 0, 0, 0, 1, 0, 0, %e A130047 1, 1, 0, 0, 1, 1, 0, %e A130047 1, 0, 1, 0, 1, 0, 1, 0, %e A130047 1, 1, 1, 1, 1, 1, 1, 1, %e A130047 1, 0, 0, 0, 0, 0, 0, 0, 0, %e A130047 ... %e A130047 Triangle (right aligned) begins: %e A130047 1, %e A130047 1, %e A130047 1, 0, %e A130047 1, 1, %e A130047 1, 0, 0, %e A130047 1, 1, 0, %e A130047 1, 0, 1, 0, %e A130047 1, 1, 1, 1, %e A130047 1, 0, 0, 0, 0, %e A130047 1, 1, 0, 0, 0, %e A130047 1, 0, 1, 0, 0, 0, %e A130047 1, 1, 1, 1, 0, 0, %e A130047 1, 0, 0, 0, 1, 0, 0, %e A130047 1, 1, 0, 0, 1, 1, 0, %e A130047 1, 0, 1, 0, 1, 0, 1, 0, %e A130047 1, 1, 1, 1, 1, 1, 1, 1, %e A130047 1, 0, 0, 0, 0, 0, 0, 0, 0, %e A130047 1, 1, 0, 0, 0, 0, 0, 0, 0, %e A130047 ... %p A130047 # From _N. J. A. Sloane_, Mar 22 2015: %p A130047 for n from 0 to 20 do %p A130047 lprint(seq(binomial(n,k) mod 2, k=0..floor(n/2))); od: %p A130047 # For row sums: %p A130047 f:=n->add(binomial(n,k) mod 2, k=0..floor(n/2)); %p A130047 [seq(f(n),n=0..60)]; %t A130047 Table[Mod[Binomial[n, k], 2], {n, 0, 10}, {k, 0, Floor[n/2]}] (* _G. C. Greubel_, Aug 12 2017 *) %Y A130047 Cf. A007318, A034868, A048896, A133179. %K A130047 nonn,tabf %O A130047 0,1 %A A130047 _Philippe Deléham_, Oct 10 2007 %E A130047 Corrected by _N. J. A. Sloane_, Mar 22 2015 at the suggestion of Kevin Ryde