A130049 An inductive sum sequence.
0, 3, 6, 7, 17, 12, 32, 20, 51, 29, 72, 39, 97, 50, 127, 63, 161, 77, 197, 92, 236, 108, 279, 126, 327, 145, 378, 166, 432, 188, 489, 211, 550, 235, 614, 260, 681, 286, 751, 313, 826, 341, 906, 371, 989, 402, 1074, 435, 1162, 469, 1252, 504, 1347, 540, 1445, 577
Offset: 1
Keywords
Examples
(a(1),a(2),...,a(6))=(1,2,4,5,8,9), so x=4 and b(6)=1+2+4+5=12. (a(1),a(2),...,a(7))=(1,2,4,5,8,9,10), so y=4 and b(7)=5+8+9+10=32.
Formula
A130049 is the sequence b defined inductively as follows: Let a(1)=1, a(2)=2, b(1)=0, b(2)=3; for n>=3, let x=Floor(n/2) and y=n-x+1. Then a(n)=least positive integer not among a(1),a(2),...,a(n-1), b(1),b(2),...b(n-1) and b(n)=a(1)+a(2)+...+a(x) if n is even, b(n)=a(y)+a(y+1)+...+a(n) if n is odd.
Comments