cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130087 Denominator of product{k=1 to n} k^mu(k), where mu is the Moebius function A008683.

Original entry on oeis.org

1, 2, 6, 6, 30, 5, 35, 35, 35, 7, 77, 77, 1001, 143, 143, 143, 2431, 2431, 46189, 46189, 46189, 4199, 96577, 96577, 96577, 7429, 7429, 7429, 215441, 215441, 6678671, 6678671, 6678671, 392863, 392863, 392863, 14535931, 765049, 765049, 765049
Offset: 1

Views

Author

Leroy Quet, May 06 2007

Keywords

Comments

a(n) is also the denominator of H(n)^2 * n! for all n < 897, where H(n) = 1 + 1/2 + ... + 1/n is the n-th harmonic number. - John M. Campbell, May 13 2011

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->denom(product(k^mobius(k),k=1..n)): seq(a(n),n=1..50); # Emeric Deutsch, May 11 2007
  • Mathematica
    Table[Denominator[HarmonicNumber[n]^2*(n!)],{n, 200}]
    (* Second program: *)
    With[{s = Array[#^MoebiusMu@ # &, 39]}, Denominator@ Table[Times @@ Take[s, n], {n, Length@ s}]] (* Michael De Vlieger, Sep 20 2017 *)
  • PARI
    a(n)=denominator(prod(k=1,n,k^moebius(k))) \\ Charles R Greathouse IV, Mar 10 2012

Extensions

More terms from Emeric Deutsch, May 11 2007