cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130091 Numbers having in their canonical prime factorization mutually distinct exponents.

This page as a plain text file.
%I A130091 #49 Feb 16 2025 08:33:06
%S A130091 1,2,3,4,5,7,8,9,11,12,13,16,17,18,19,20,23,24,25,27,28,29,31,32,37,
%T A130091 40,41,43,44,45,47,48,49,50,52,53,54,56,59,61,63,64,67,68,71,72,73,75,
%U A130091 76,79,80,81,83,88,89,92,96,97,98,99,101,103,104,107,108,109,112,113,116
%N A130091 Numbers having in their canonical prime factorization mutually distinct exponents.
%C A130091 This sequence does not contain any number of the form 36n-6 or 36n+6, as such numbers are divisible by 6 but not by 4 or 9. Consequently, this sequence does not contain 24 consecutive integers. The quest for the greatest number of consecutive integers in this sequence has ties to the ABC conjecture (see the MathOverflow link). - _Danny Rorabaugh_, Sep 23 2015
%C A130091 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities. The enumeration of these partitions by sum is given by A098859. - _Gus Wiseman_, May 04 2019
%C A130091 Aktaş and Ram Murty (2017) called these terms "special numbers" ("for lack of a better word"). They prove that the number of terms below x is ~ c*x/log(x), where c > 1 is a constant. - _Amiram Eldar_, Feb 25 2021
%C A130091 Sequence A005940(1+A328592(n)), n >= 1, sorted into ascending order. - _Antti Karttunen_, Apr 03 2022
%H A130091 Reinhard Zumkeller, <a href="/A130091/b130091.txt">Table of n, a(n) for n = 1..10000</a>
%H A130091 Kevser Aktaş and M. Ram Murty, <a href="https://doi.org/10.1007/s12044-016-0326-z">On the number of special numbers</a>, Proceedings - Mathematical Sciences, Vol. 127, No. 3 (2017), pp. 423-430; <a href="https://www.ias.ac.in/article/fulltext/pmsc/127/03/0423-0430">alternative link</a>.
%H A130091 MathOverflow, <a href="http://mathoverflow.net/questions/201489">Consecutive numbers with mutually distinct exponents in their canonical prime factorization</a>
%H A130091 Carlo Sanna, <a href="https://arxiv.org/abs/1902.09224">On the number of distinct exponents in the prime factorization of an integer</a>, arXiv:1902.09224 [math.NT], 2019.
%H A130091 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactorization.html">Prime Factorization</a>
%F A130091 a(n) < A130092(n) for n<=150, a(n) > A130092(n) for n>150.
%e A130091 From _Gus Wiseman_, May 04 2019: (Start)
%e A130091 The sequence of terms together with their prime indices begins:
%e A130091    1: {}
%e A130091    2: {1}
%e A130091    3: {2}
%e A130091    4: {1,1}
%e A130091    5: {3}
%e A130091    7: {4}
%e A130091    8: {1,1,1}
%e A130091    9: {2,2}
%e A130091   11: {5}
%e A130091   12: {1,1,2}
%e A130091   13: {6}
%e A130091   16: {1,1,1,1}
%e A130091   17: {7}
%e A130091   18: {1,2,2}
%e A130091   19: {8}
%e A130091   20: {1,1,3}
%e A130091   23: {9}
%e A130091   24: {1,1,1,2}
%e A130091   25: {3,3}
%e A130091   27: {2,2,2}
%e A130091 (End)
%p A130091 filter:= proc(t) local f;
%p A130091 f:= map2(op,2,ifactors(t)[2]);
%p A130091 nops(f) = nops(convert(f,set));
%p A130091 end proc:
%p A130091 select(filter, [$1..1000]); # _Robert Israel_, Mar 30 2015
%t A130091 t[n_] := FactorInteger[n][[All, 2]]; Select[Range[400],  Union[t[#]] == Sort[t[#]] &]  (* _Clark Kimberling_, Mar 12 2015 *)
%o A130091 (PARI) isok(n) = {nbf = omega(n); f = factor(n); for (i = 1, nbf, for (j = i+1, nbf, if (f[i, 2] == f[j, 2], return (0)););); return (1);} \\ _Michel Marcus_, Aug 18 2013
%o A130091 (PARI) isA130091(n) = issquarefree(factorback(apply(e->prime(e), (factor(n)[, 2])))); \\ _Antti Karttunen_, Apr 03 2022
%Y A130091 Complement of A130092. A351564 is the characteristic function.
%Y A130091 Subsequence of A351294.
%Y A130091 Cf. A000961, A006939, A181818, A304686, A319161, A342028, A342029, A342030, A342031, A342032 (subsequences).
%Y A130091 Cf. A005940, A048767, A048768, A056239, A098859, A112798, A118914, A181796, A217605, A325326, A325337, A325368, A327498, A327523, A328592, A336423, A336424, A336569, A336570, A336571, A343012, A343013.
%K A130091 nonn
%O A130091 1,2
%A A130091 _Reinhard Zumkeller_, May 06 2007