cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130097 Primes prime(n) such that at least one of the two numbers (prime(n+2)^2-prime(n)^2)/2 - 1 and (prime(n+2)^2-prime(n)^2)/2 + 1 is not prime.

This page as a plain text file.
%I A130097 #2 Mar 31 2012 14:40:00
%S A130097 3,5,11,13,17,23,29,31,41,43,47,53,59,73,79,83,89,101,103,109,113,131,
%T A130097 137,139,149,151,163,167,173,179,181,191,193,197,199,211,223,227,233,
%U A130097 239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337
%N A130097 Primes prime(n) such that at least one of the two numbers (prime(n+2)^2-prime(n)^2)/2 - 1 and (prime(n+2)^2-prime(n)^2)/2 + 1 is not prime.
%e A130097 a(1)=3 because (7^2 - 3^2)/2 - 1 = 19 and (7^2 - 3^2)/2 + 1 = 21 (21 is not prime),
%e A130097 a(2)=5 because (11^2 - 5^2)/2 - 1 = 47 and (11^2 - 5^2)/2 + 1 = 49 (49 is not prime),
%e A130097 a(3)=11 because (17^2 - 11^2)/2 - 1 = 83 and (17^2 - 11^2)/2 + 1 = 85 (85 is not prime), ...
%p A130097 ts_p2_20:=proc(n) local a,b,i,ans; ans := [ ]: for i from 2 to n do a := (ithprime(i+2)^(2)-ithprime(i)^(2))/2-1: b := (ithprime(i+2)^(2)-ithprime(i)^(2))/2+1: if not (isprime(a)=true and isprime(b)=true) then ans := [ op(ans), ithprime(i) ]: fi od; RETURN(ans) end: ts_p2_20(300);
%Y A130097 Cf. A130761.
%K A130097 nonn
%O A130097 1,1
%A A130097 _Jani Melik_, Aug 01 2007